Chunks and Rules for Cognitive Control

A
onlarioe oy

—
EE——

1/10

Cognitive Approach to Low-Code Control

Low-code is an approach to application
development that simplifies the process
of automating workflows and building
applications

Some low-code platforms use visual drag-
and-drop elements and prebuilt
components along with scripting

Empowering professional developers and
business users to create applications
more efficiently

Cognitive approach mimics how humans
execute tasks, drawing upon decades of
work in the cognitive sciences

Behaviour is described using facts + rules

Enabling application developers to use a
low-code cognitive approach to specifying
real-time behaviour

Event-driven concurrent threads of
behaviour using APIs exposed by
resources as described in taxonomies

Easy to learn, convenient syntax for
chunks™® and condition-action rules

* W3C Cognitive Al CG’s Chunks & Rules
specification

Mature JavaScript library

Extension to distributed agents, e.g.
swarms using asynchronous message
exchange

* Chunks are sets of name/value pairs 2/10

https://w3c.github.io/cogai/chunks-and-rules.html

Formal Specification from Cognitive Al CG

« B D B

& O

©@ ® v0 *

&

®

£ > C @ B8 w3c.github.io/cogai/chunks-and-rules.html

TABLE OF CONTENTS

4.1
42
43
4.4
45
46

5.1
5.1.1
51.2

543

Abstract
Status of This Document
Introduction

Conformance
Conformance classes

Data types

Chunks and graphs
Chunk type

Chunk identifier
Chunk properties
Chunk context

Links between chunks
Graph of chunks

Rules and modules
Rules

Conditions

Actions
Matching chunks

[
0
4

Q- Search Bing v

Re

Chunks and Rules
Draft Community Group Report 02 April 2024

Latest published version:
https://www.w3.org/chunks/
Latest editor's draft:
https://w3c.github.io/cogai/
Editors:
Frangois Daoust (W3C)
Dave Raggett (W3C)

Feedback:
GitHub w3c/cogai (pull requests, new issue, open issues)

Copyright © 2024 the Contributors to the Chunks and Rules Specification, published by the Cognitive Al Community Group under the W3C
Community Contributor License Agreement (CLA). A human-readable summary is available.

Abstract

This specification defines a cognitive graph database model featuring chunks as collections of properties, and
rules that operate on them in conjunction with highly scalable graph algorithms, and a simple notation for
serializing graphs. The model is designed with the aim of facilitating machine learning for vocabularies and rules,
and inspired by advances in the cognitive sciences on the organisation of the mammalian brain.

Status of This Document

This specification was published by the Cognitive Al Community Group. It is not a W3C Standard nor is it on the
W3C Standards Track. Please note that under the W3C Community Contributor License Agreement (CLA) there 3 / 10

is a limited opt-out and other conditions apply. Learn more about W3C Community and Business Groups.

Cognitive Architecture

* Inspired by John Anderson’s ACT-R Cognition — Sequential Rule Engine

* Mimics characteristics of human cognition and
memory, including spreading activation and the
forgetting curve [

* Asynchronous operations that enable distributed
cognition
* Perception builds live models of the environment

including events that trigger corresponding
behaviours

* Actions expressed as intents to be realised as

appropriate

* intent: an aim, purpose, goal or objective * The cortex holds a set of cognitive modules, each of which is

- . i associated with a module buffer that holds a single chunk
* Reasonlng 1S dQC(?UpIEd from real time Control * Predefined asynchronous operations on buffers in analogy with REST
over external actions, e.g. a robot arm

Long term memory
local or remote

Rule Engine
(basal ganglia)

4/10

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.1488

Chunks and Rules

web-based demos for smart homes and factories

Chunks and Rules o

| chunk re— Lype L j @ property
* Chunks are sets of properties »
- L |

rule
* Name/value pairs that correspond to a set

of RDF triples with same subject rule
* Rule conditions and actions that specify property — = —
which cognitive module buffer they @
value

app|y to Pp— name condition

* Variables are scoped to the rule they o> TN«
appear in value .

* Actions either directly update the buffer name oo
or invoke operations on the buffer’s

module, which asynchronously updates number variable

the buffer — .»G} o |

* Extensible suite of cortical operations
inspired by REST

names beginning with “@” are reserved, e.g. @do for actions

See W3C Cognitive Al Community Group s5/10

https://github.com/w3c/cogai/blob/master/README.md

Chunk Rules for Digital Twins

Nephele’s Virtual Objects are related
to digital twins for devices, processes
and even people*

Chunk rule actions can be used to
invoke the affordances exposed by
digital twins

Some glue code is needed to handle
the data formats and protocols

Complex results involve using the
predefined suite of operations over
chunk graphs given that module
buffers are limited to single chunks

* Digital twins for use in healthcare applications, and for
virtual devices as abstractions over multiple physical devices

: o . 1
(i.e. composite virtual objects) 6/10

Chunks and Rules

 Mature JavaScript library for use in
webpages or with NodelJS

* Application script declares additional
operations, e.g. for robot control,
layered above ROS operations

* These are implemented in JavaScript
and can use real-time clock as well as
networking for external messaging

e ERCIM can help with this
* Contact Dave Raggett <dsr@w3.org>

Note: rules can use variables for dynamic parameters
where an object location is determined at run-time.

Filling

@EEE
Q

Factory demo: filling, capping and packing bottles
of wine with real-time control over conveyor belts,
filling and capping machines, and a robot arm

move robot arm into position to grasp empty bottle
after {step 1} =>
robot {@do move; x -170; y -75; angle -180; gap 30; step 2}

grasp bottle and move it to the filling station
after {step 2} =>
goal {@do clear},
robot {@do grasp},
robot {@do move; x -80; y -240; angle -90; gap 30; step 3}

7 /10
See also smart homes demo

https://github.com/w3c/cogai/blob/master/demos/chunks.js
mailto:dsr@w3.org
https://www.w3.org/Data/demos/chunks/robot/
https://www.w3.org/Data/demos/chunks/home/

Robot Operating System (ROS)

ROS diffbot

* ROS is an open source software * Chunks & Rules are a good fit for
framework for robots controlling ROS robots

* Linux, Windows, MacOS Using ROS topic streams to update

* Strong developer community chunk models of robots and their

 Message based with hardware environment

abstraction e Using Chunk Rules to involve ROS
* Topic based streams services
* Services with request/response * Delegation for planning and execution
* Nodes for message exchange * Existing JavaScript libraries for

* Shared database for parameters integration with ROS

8/10

https://www.ros.org/
https://roboticsknowledgebase.com/wiki/tools/roslibjs/
https://github.com/ros-mobile-robots/diffbot

@ Iterative Refinement

* Cognitive rules can respond in * Development starts using a simple
milliseconds™, and can be approach and iteratively refines it
complemented by faster reactions as new requirements come to light,
using simple reflex responses e.g. when something unexpected
implemented at a lower level occurs at run-time and needs to be

* Application development is a handled
collaboration between people * That may further necessitate
maintaining the low-code changes to the digital twins, e.g. to
description of high level behaviour sense error conditions

and system programmers
responsible for the glue code for
the digital twins, i.e. Nephele
(composite) VOs

° |n robot use case: errors such as a
bottle falling over, being only
partially filled, or badly capped

* Rule execution is fast as time consuming operations are handled asynchronously 9/10

Questions?

10/ 10

	Diapositiva 1: Use, Create, and Promote open source!
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4: Abandonware is not an option!
	Diapositiva 5: My reactions to Abandonware!
	Diapositiva 6
	Diapositiva 7: Reuse instead of reinventing the wheel : eg MQTT
	Diapositiva 8: Open Source Stack - Swarm Intelligence view
	Diapositiva 9
	Diapositiva 10: Open source is Mandatory for Swarm computing
	Diapositiva 11: Your project community is the one you create!
	Diapositiva 12: Your project community is the one you create!
	Diapositiva 13: Start the party and they may come!
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16: Select an OSS license for the project
	Diapositiva 17: Start open sourcing as early as possible
	Diapositiva 18: Open the kitchen! Work in public!
	Diapositiva 19: Rally partners! Collaborate in open source!
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 1
	Diapositiva 2: Outline
	Diapositiva 3: Motivation
	Diapositiva 4: Coaty Framework
	Diapositiva 5: Coaty Communication Foundation
	Diapositiva 6: Coaty Communication Patterns
	Diapositiva 7: Coaty Evolution
	Diapositiva 8: Exemplary OpenSwarm Use Case
	Diapositiva 9: Summary
	Diapositiva 1: Chunks and Rules for Cognitive Control
	Diapositiva 2: Cognitive Approach to Low-Code Control
	Diapositiva 3: Formal Specification from Cognitive AI CG
	Diapositiva 4: Cognitive Architecture
	Diapositiva 5: Chunks and Rules web-based demos for smart homes and factories
	Diapositiva 6: Chunk Rules for Digital Twins
	Diapositiva 7: Chunks and Rules
	Diapositiva 8: Robot Operating System (ROS)
	Diapositiva 9: Iterative Refinement
	Diapositiva 10: Questions?

