
Chunks and Rules for Cognitive Control

1 / 10

Cognitive Approach to Low-Code Control

• Low-code is an approach to application
development that simplifies the process
of automating workflows and building
applications

• Some low-code platforms use visual drag-
and-drop elements and prebuilt
components along with scripting

• Empowering professional developers and
business users to create applications
more efficiently

• Cognitive approach mimics how humans
execute tasks, drawing upon decades of
work in the cognitive sciences

• Behaviour is described using facts + rules

• Enabling application developers to use a
low-code cognitive approach to specifying
real-time behaviour

• Event-driven concurrent threads of
behaviour using APIs exposed by
resources as described in taxonomies

• Easy to learn, convenient syntax for
chunks* and condition-action rules
• W3C Cognitive AI CG’s Chunks & Rules

specification

• Mature JavaScript library

• Extension to distributed agents, e.g.
swarms using asynchronous message
exchange

* Chunks are sets of name/value pairs 2 / 10

https://w3c.github.io/cogai/chunks-and-rules.html

Formal Specification from Cognitive AI CG

3 / 10

Cognitive Architecture

• Inspired by John Anderson’s ACT-R
• Mimics characteristics of human cognition and

memory, including spreading activation and the
forgetting curve

• Asynchronous operations that enable distributed
cognition

• Perception builds live models of the environment
including events that trigger corresponding
behaviours

• Actions expressed as intents to be realised as
appropriate
• intent: an aim, purpose, goal or objective

• Reasoning is decoupled from real-time control
over external actions, e.g. a robot arm

Long term memory
local or remote

Long term memory
local or remote

Long term memory
local or remote

ActionsPerception

buffer
buffer

Rule Engine
(basal ganglia)

buffer

b
u

ff
er

b
u

ffer

• The cortex holds a set of cognitive modules, each of which is
associated with a module buffer that holds a single chunk

• Predefined asynchronous operations on buffers in analogy with REST

Cognition – Sequential Rule Engine

in
d

ex
in

g in
d

exin
g

indexing

4 / 10

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.1488

Chunks and Rules
web-based demos for smart homes and factories

• Chunks are sets of properties
• Name/value pairs that correspond to a set

of RDF triples with same subject

• Rule conditions and actions that specify
which cognitive module buffer they
apply to

• Variables are scoped to the rule they
appear in

• Actions either directly update the buffer
or invoke operations on the buffer’s
module, which asynchronously updates
the buffer

• Extensible suite of cortical operations
inspired by REST

property

condition

action
value

variable

names beginning with “@” are reserved, e.g. @do for actions

Chunks and Rules

rule

chunk

See W3C Cognitive AI Community Group 5 / 10

https://github.com/w3c/cogai/blob/master/README.md

Chunk Rules for Digital Twins

• Nephele’s Virtual Objects are related
to digital twins for devices, processes
and even people*

• Chunk rule actions can be used to
invoke the affordances exposed by
digital twins

• Some glue code is needed to handle
the data formats and protocols

• Complex results involve using the
predefined suite of operations over
chunk graphs given that module
buffers are limited to single chunks

* Digital twins for use in healthcare applications, and for
virtual devices as abstractions over multiple physical devices
(i.e. composite virtual objects)

6 / 10

Chunks and Rules

• Mature JavaScript library for use in
webpages or with NodeJS

• Application script declares additional
operations, e.g. for robot control,
layered above ROS operations

• These are implemented in JavaScript
and can use real-time clock as well as
networking for external messaging

• ERCIM can help with this

• Contact Dave Raggett <dsr@w3.org>

Factory demo: filling, capping and packing bottles
of wine with real-time control over conveyor belts,
filling and capping machines, and a robot arm

move robot arm into position to grasp empty bottle
after {step 1} =>
 robot {@do move; x -170; y -75; angle -180; gap 30; step 2}

grasp bottle and move it to the filling station
after {step 2} =>
 goal {@do clear},
 robot {@do grasp},
 robot {@do move; x -80; y -240; angle -90; gap 30; step 3}

See also smart homes demo
Note: rules can use variables for dynamic parameters
where an object location is determined at run-time.

7 / 10

https://github.com/w3c/cogai/blob/master/demos/chunks.js
mailto:dsr@w3.org
https://www.w3.org/Data/demos/chunks/robot/
https://www.w3.org/Data/demos/chunks/home/

Robot Operating System (ROS)

• ROS is an open source software
framework for robots
• Linux, Windows, MacOS

• Strong developer community

• Message based with hardware
abstraction
• Topic based streams

• Services with request/response

• Nodes for message exchange

• Shared database for parameters

• Chunks & Rules are a good fit for
controlling ROS robots

• Using ROS topic streams to update
chunk models of robots and their
environment

• Using Chunk Rules to involve ROS
services
• Delegation for planning and execution

• Existing JavaScript libraries for
integration with ROS

ROS diffbot

8 / 10

https://www.ros.org/
https://roboticsknowledgebase.com/wiki/tools/roslibjs/
https://github.com/ros-mobile-robots/diffbot

Iterative Refinement

• Cognitive rules can respond in
milliseconds*, and can be
complemented by faster reactions
using simple reflex responses
implemented at a lower level

• Application development is a
collaboration between people
maintaining the low-code
description of high level behaviour
and system programmers
responsible for the glue code for
the digital twins, i.e. Nephele
(composite) VOs

• Development starts using a simple
approach and iteratively refines it
as new requirements come to light,
e.g. when something unexpected
occurs at run-time and needs to be
handled

• That may further necessitate
changes to the digital twins, e.g. to
sense error conditions

• In robot use case: errors such as a
bottle falling over, being only
partially filled, or badly capped

* Rule execution is fast as time consuming operations are handled asynchronously 9 / 10

Questions?

10 / 10

	Diapositiva 1: Use, Create, and Promote open source!
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4: Abandonware is not an option!
	Diapositiva 5: My reactions to Abandonware!
	Diapositiva 6
	Diapositiva 7: Reuse instead of reinventing the wheel : eg MQTT
	Diapositiva 8: Open Source Stack - Swarm Intelligence view
	Diapositiva 9
	Diapositiva 10: Open source is Mandatory for Swarm computing
	Diapositiva 11: Your project community is the one you create!
	Diapositiva 12: Your project community is the one you create!
	Diapositiva 13: Start the party and they may come!
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16: Select an OSS license for the project
	Diapositiva 17: Start open sourcing as early as possible
	Diapositiva 18: Open the kitchen! Work in public!
	Diapositiva 19: Rally partners! Collaborate in open source!
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 1
	Diapositiva 2: Outline
	Diapositiva 3: Motivation
	Diapositiva 4: Coaty Framework
	Diapositiva 5: Coaty Communication Foundation
	Diapositiva 6: Coaty Communication Patterns
	Diapositiva 7: Coaty Evolution
	Diapositiva 8: Exemplary OpenSwarm Use Case
	Diapositiva 9: Summary
	Diapositiva 1: Chunks and Rules for Cognitive Control
	Diapositiva 2: Cognitive Approach to Low-Code Control
	Diapositiva 3: Formal Specification from Cognitive AI CG
	Diapositiva 4: Cognitive Architecture
	Diapositiva 5: Chunks and Rules web-based demos for smart homes and factories
	Diapositiva 6: Chunk Rules for Digital Twins
	Diapositiva 7: Chunks and Rules
	Diapositiva 8: Robot Operating System (ROS)
	Diapositiva 9: Iterative Refinement
	Diapositiva 10: Questions?

