

SmartEdge

Use Case: Autonomous Mobile Robots for Smart Factories

Dai Bowden, Dell Technologies, david.bowden@dell.com

SMARTEDGE Project

Grant No. 101092908

https://www.smart-edge.eu/

Smart Factories

- □ Smaller more flexible local factories
 - Closer to customers they supply
 - Reduced transportation CO² emissions
 - Shorter more robust supply chains
 - Easier to recycle component back into production
 - ✓ Larger range of products smaller batch sizes
 - Dynamic production lines
 - Copes with indeterminant multi-agent environment
 - Similar costs
- □ Enabling smart factory technologies
 - ✓ Robotic Flexible Assembly Cells (RFACs)
 - ✓ Autonomous Mobile Robots (AMRs)
 - ✓ Made up of swarms of intelligent edge devices called nodes
 - Peer-to-peer collaboration at the edge
 - · Coming together to achieve a common goal
 - With minimal central supervision
 - Some degree of local problem-solving ability
 - Heterogeneous devices contributing different capabilities and skills
 - Communicating using common semantics interfaces

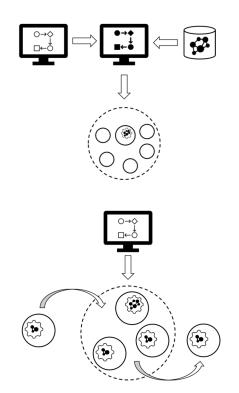
Dell Technologies' use case

Humans are messy

West

North

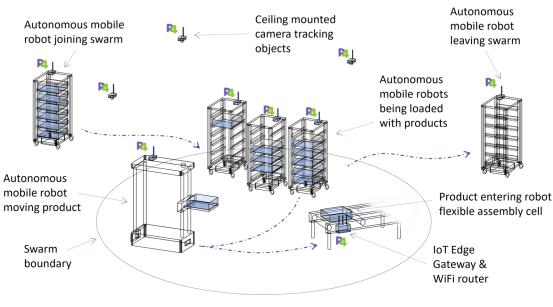
South


Static bound and dynamic swarm

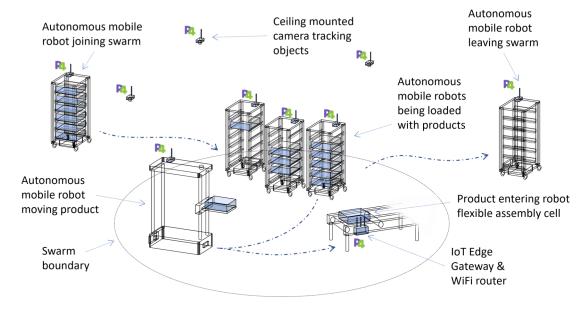
- SmartEdge supports several types of swarm
 - Statically bound swarms
 - $\checkmark\,$ Swarm nodes defined at design time and allocated to swarm
 - \checkmark Nodes remain with the swarm throughout its operational lifespan
 - \checkmark Useful for supporting brownfield devices and backwards compatibility
 - Dynamic swarms (goal oriented)
 - ✓ Swarm starts with a seed node around which the swarm forms
 - ✓ Devices are actively enlisted into the swarm to provide skills the swarm needs to fulfil its goal

Manufacturing use case

Traffic use case


- Make use of swarm contracts to enlist devices into swarm
- $\checkmark\,$ Swarm nodes remain independent agents and can leave the swarm if required
 - e.g. battery level running low
- \checkmark When the goal is achieved the swarm brakes up
 - But with a little bit of stickiness
- Dynamic swarm (device oriented)
 - \checkmark Similar to goal oriented swarms but more for the benefit of the individual device
 - ✓ Requires a certain number of core swarm nodes
 - \checkmark Devices request to join the swarm because it provides a benefit to them
 - e.g. faster transition through road traffic junctions

AMRs vs AGVs

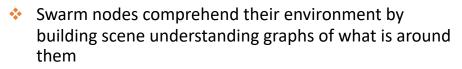

- AGVs Automated Guided Vehicles
 - Been in our factories for decades
 - Tend to follow predefined routes
 - When they encounter an obstacle
 ✓ they stop
- AMRs Autonomous Mobile Robots
 - Newer addition to our factories
 - Can navigate their environment
 - ✓ typically using SLAM
 - Limited intelligence to avoid obstacles
- SmartEdge AMRs
 - □ Form swarms of AMRs that collaborate in achieving a common goal
 - $\hfill\square$ Use semantic integration to communicate within the swarm
 - □ Use semantic SLAM to better understand their environment
 - ✓ And modify their behaviour appropriately

SLAM: Simultaneous localization and mapping

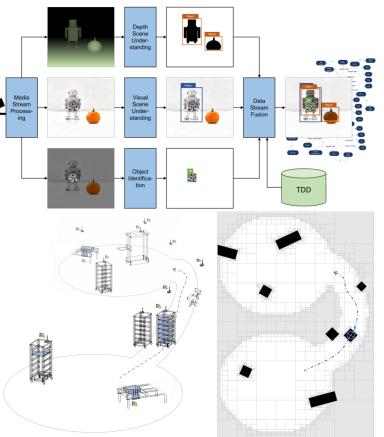
Semantic SLAM: arXiv:2201.11625: SemRob: Towards Semantic Stream Reasoning for Robotic Operating Systems

- SmartEdge supports different edge devices
 - □ With different skills and capabilities
 - e.g. ceiling mounted cameras or flexible assembly cells
- Swarm nodes can borrow sensor streams and even environmental 3D models from other nodes
 - And even share data processing task between swarm nodes
- Much of the swarm formation and management is handled in the network layer
 - Developed in the P4 network programming language

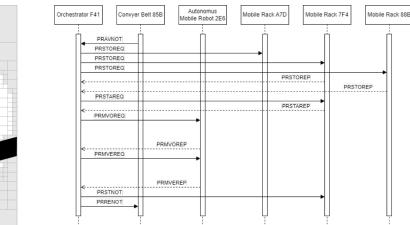
Web of Things

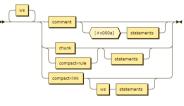


Web of Things (WoT)


- □ A set of guidelines and standards coordinated by the W3C
- **Used to model the nodes in the swarm in terms of their:**
 - ✓ Properties
 - e.g. a thing's location or what skills it has
 - ✓ Action operations that can be performed on a thing
 - ✓ Events notifications that can be emitted by a thing
- $\hfill\square$ Can be used to construct a digital twin of the thing
- Can also be used to model other things in the environment that the swarm nodes interact with
 - Objects
 - **Other independent agents**
 - ✓ e.g. people
- The properties, actions, and events are grouped together into a Thing Description (TD)
 - □ And the TDs are stored in a Thing Description Directory (TDD)
 - □ SmartEdge makes extensive use of the TDD to build swarms
 - **D** TDDs can be a central resource or implemented as distributed replicas

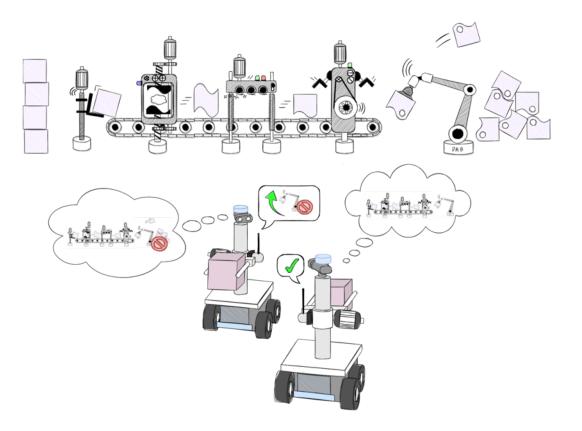
A Common Scene Understanding Between Swarm Nodes




- **□** Each swarm node can have a different perspective
- And augmented with thing descriptions from the TDD
 - ✓ Which provides additional context
- The scene graphs are shared between swarm nodes in real-time
 - $\hfill\square$ And can be used to build 3D models of the environment
 - \checkmark Which can also be shared with other nodes in the swarm
- This will enable a blind AMR (no sensors) to navigate around the factory by utilising semantic data feeds from other swarm nodes
 - A 3D semantic environmental model can be converted into a 2D occupancy grid used for navigation of the AMR
 - Or modify its behaviour depending on the type of obstacle
 - \checkmark People can be asked to move caster chairs could be pushed

Swarm Node Collaboration

- Nodes in a swarm can communicate and collaborate to achieve a common goal
 - e.g. moving products from flexible assembly cells into autonomous mobile racks
- The actions performed by the swarm nodes are coordinated by an orchestrator
 - □ The orchestrator is just a node in the swarm with the right set of skills
 - □ Orchestrator can execute a plan implemented in W3C's Chunks & Rules
 - ✓ Or other rules engine
- Swarm nodes exchange messages and negotiate actions between themselves



- We need more flexible, adaptable, and productive smart factories
- Swarms of autonomous mobile robots can help implement smart factories and cope with uncertain environments
- Different types of swarms can be used for different use cases
- Swarm nodes share semantic information to have a better understanding of their environment
- Swarms enable collaboration between nodes in a trusted and safe manner to achieve common goals

This project is supported by the European Union's Horizon RIA research and innovation programme under grant agreement No. 101092908 (SMARTEDGE)

https://www.smart-edge.eu/