

SmartEdge
 Semantic Low-code Programming

Tools for Edge Intelligence
This project is supported by the European Union’s Horizon RIA research

and innovation programme under grant agreement No. 101092908

Deliverable D3.2

First Implementation of Tools
for Continuous Semantic Integration

Editor Mario Scrocca (CEF)

Contributors D. Anicic (SAG), B. Anuraj (HESSO), M. Bagheri (CONV), L.
Bassbouss (FhG), D. Bowden (DELL), J. Calbimonte
(HESSO), A. Carenini (CEF), K. Dorofeev (SAG), G. Gizzi
(CEF), M. Grassi (CEF), K. Köhle (SAG), A. Thuluva (SAG),
R. Wenning (ERCIM)

Version 1.0

Date December 08, 2024

Distribution PUBLIC (PU)

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

DISCLAIMER

This document contains information which is proprietary to the SmartEdge (Semantic
Low-code Programming Tools for Edge Intelligence) consortium members that is subject
to the rights and obligations and to the terms and conditions applicable to the Grant
Agreement number 101092908. The action of the SmartEdge consortium members is
funded by the European Commission.

Neither this document nor the information contained herein shall be used, copied,
duplicated, reproduced, modified, or communicated by any means to any third party, in
whole or in parts, except with prior written consent of the SmartEdge consortium
members. In such case, an acknowledgement of the authors of the document and all
applicable portions of the copyright notice must be clearly referenced. In the event of
infringement, the consortium members reserve the right to take any legal action it
deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view
of the European Commission. Neither the SmartEdge consortium members as a whole,
nor a certain SmartEdge consortium member warrant that the information contained in
this document is suitable for use, nor that the use of the information is accurate or free
from risk, and accepts no liability for loss or damage suffered by any person using this
information.

The information in this document is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

REVISION HISTORY

LIST OF AUTHORS

Revision Date Responsible Comment

0.1 15.04.2024 CEF ToC

0.2 10.07.2024 CEF Revised ToC with feedback from WP3

partners and content from MS3.1

0.3 15.07.2024 SAG Revised the Concept of Continuous

Semantic Integration and Integration

Tools

0.4 13.09.2024 CEF Add final design for DataOps Toolbox

as artefacts 3.5, 3.6, 3.7.

0.5 20.09.2024 SAG Finalization of Standardized

Semantic Interfaces for SmartEdge

0.6 05.10.2024 SAG First Implementation of Standardized

Semantic Interfaces for SmartEdge

0.7 16.10.2024 CEF, SAG,

HES-SO

Introduction to WP3 artefacts and

how they enable Continuous

Semantic Integration

0.8 30.10.2024 CEF Revise final design and add first

implementation for DataOps Toolbox

0.9 10.11.2024 HES-SO Revised artefacts 3.8, 3.9, 3.10

0.10 18.11.2024 CEF, SAG,

HES-SO

Document ready for internal review

0.11 25.11.2024 CEF, SAG,

HES-SO

Version integrating comments from

internal reviewers

0.12 27.11.2024 CEF, SAG,

HES-SO

Document ready for quality review

1.0 6.12.2024 CEF, ERCIM Version integrating comments from

quality check and ready for

submission

Partner Name Surname Contributions

CEF Mario Scrocca Editor, Section 1, 3, 5

CEF Marco Grassi Section 3

CEF Alessio Carenini Section 3.1

CEF Gianluca Gizzi Section 3.1.2, 3.2.2, 3.3

SAG Darko Anicic Section 1, 2

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

ABBREVIATIONS

SAG Kirill Dorofeev Section 1.5, 2.1.4, 2.1.6, 2.2.3, 2.2.5

SAG Aparna Saisree Thuluva Section 2.1.1, 2.1.2, 2.2.1, 2.2.2

SAG Kay Koehle Section 2.1.4, 2.2.4

HESSO Jean-Paul Calbimonte Section 1, 4

HESSO Banani Anuraj Section 4

DELL Dai Bowden Section 1, 2.1.6, 2.2.5

FHG Louay Bassbouss Section 2.1.4, 2.2.3

CONV Mehrdad Bagheri Section 3.3.1

ERCIM Rigo Wenning Quality Check

Acronym Description

ADAS Advanced Driving Assistance System

AI Artificial Intelligence

API Application Programming Interface

BLE Bluetooth

CAD Computer-Aided Design

CPU Central Processing Unit

CQLES Continuous Query Evaluation over Linked Streams

CQLES-QL CQLES-Query Language

CSI Continuous Semantic Integration

DB Database

DDS Data Distribution Service

ETL Extract-Transform-Load

HW Hardware

ID Identity

IDE Integrated Development Environment

IoT Internet of Things

IT Information Technology

JSON JavaScript Object Notation

JSON-LD JSON-Linked Data

KB Knowledge Base

JVM Java Virtual Machine

KG Knowledge Graph

KPI Key Performance Indicator

LiDAR Light Detection and Ranging

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MX Mendix

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

OCI Open Container Initiative

OPC Open Platform Communications

OPC-UA OPC Unified Architecture

OS Operating System

OT Operations Technology

PACK-ML Packaging ML

PLC Programmable Logic Controller

R2RML RDB to RDF Mapping Language

RDF Resource Description Language

RML RDF Mapping Language

ROS Robot Operating System

SAREF Smart Applications Reference

SHACL Shapes Constraint Language

SotA State of the Art

SotP State of the Practice

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SOSA Sensor, Observation, Sample, and Actuator ontology

SW Software

TDD Thing Description Directory

TRL Technical Readiness Level

UC Use case

URDF Unified Robot Description Format

WoT Web of Things

WoT TD WoT Thing Description

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

EXECUTIVE SUMMARY

Deliverable D3.2 details the final design of the tools for Continuous Semantic Integration
(CSI) and their first implementation defined by the SmartEdge project within WP3.
Starting from the design activities reported in D3.1 and the final list of requirements
defined in D2.2, this deliverable identifies and describes a set of artefacts to enable the
overall concept of CSI.
Task 3.1 defines interoperable semantic models to describe the nodes available and
their capabilities as the first step in enabling a specific use case when adopting the
SmartEdge solutions. Furthermore, a shared repository is implemented for storing,
retrieving, and querying such descriptions. To enable collaboration among
heterogeneous nodes that may join a swarm, a solution is proposed to allow for
standardized communication interfaces among them.
However, interoperability of interfaces is not enough since nodes may rely on different
information models and data formats that should be harmonized. Task 3.2 addresses
these aspects by providing a DataOps toolbox to define mediated data exchanges for
semantic interoperability. The flexible execution of data exchanges among nodes is also
supported, considering heterogeneous deployment requirements and the potential
interplay between nodes on Cloud and Edge. Finally, the performance and scalability of
mediated data exchanges are addressed.
Task 3.3., building on the described solutions, provides a dedicated user interface to
enable the low-code definition of swarm applications for edge intelligence. Additionally,
a set of artefacts is responsible for identifying and orchestrating relevant nodes in order
to compose a swarm able to execute the defined applications.
The deliverable describes the first release of the artefacts designed and implemented
by WP3 to support the first lab tests and validation phase within WP6, considering the
SmartEdge use cases. Deliverable D6.1 will fully report and discuss the validation
planning, the results obtained in the first iteration and the fulfilment status for
requirements associated with WP3 artefacts.
This document will be updated in month 30 in deliverable D3.3 based on the final
implementation of the tools for CSI that will consider the feedback from WP6 activities.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

TABLE OF CONTENTS
1 Introduction ... 1

1.1 Concept of Continuous Semantic Integration ... 1

1.2 Continuous Semantic Integration in SmartEdge ... 3

1.3 Continuous Semantic Integration Artefacts .. 4

1.4 Mapping KPIs and Artefacts .. 6

1.5 Relations to WP4 and WP5 ... 7

1.6 Structure of the Document ... 8

2 Standardized Semantic Interfaces for SmartEdge ... 9

2.1 Final Design ... 9

2.1.1 Final Design of SmartEdge Schema (A3.1) .. 9

2.1.2 Final Design of Recipe model (A3.1) ... 10

2.1.3 Final Design of Middleware with Standardized Semantic Interfaces (A3.2) 12

2.1.4 Final Design of Knowledge Graph Repository (A3.3) 14

2.1.5 Final Design of Mendix Toolchain (A3.4) ... 15

2.1.6 Final Design of Semantic Media Service (A3.11) ... 16

2.2 First Implementation .. 17

2.2.1 First Implementation of SmartEdge Schema (A3.1) 17

2.2.2 First Implementation of Recipe Model (A3.1) ... 18

2.2.3 First Implementation of Middleware with Standardized Semantic Interfaces
(A3.2) 25

2.2.4 First Implementation of Knowledge Graph Repository (A3.3) 28

2.2.5 First Implementation of Mendix Toolchain (A3.4) 29

2.2.6 First Implementation of Semantic Media Service (A3.11) 30

3 DataOps Tool for Semantic Management of Things and Embedded AI Apps 31

3.1 Final Design ... 32

3.1.1 Final Design of the DataOps Pipeline Components (A3.5) 34

3.1.2 Final Design of the DataOps Deployment Templates (A3.6) 39

3.1.3 Final Design of Low-code DataOps Configuration (A3.7) 43

3.2 First Implementation .. 45

3.2.1 First Implementation of the DataOps Pipeline Components (A3.5) 45

3.2.2 First Implementation of the DataOps Deployment Templates (A3.6) 54

3.2.3 First Implementation of Low-code DataOps Configuration (A3.7) 58

3.3 DataOps Toolbox Pipelines for SmartEdge.. 62

3.3.1 DataOps Pipeline for harmonised traffic data (UC2) 62

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

3.3.2 DataOps Pipeline for OPC-UA support in A3.3 (UC4) 66

4 Creation and Orchestration of Swarm Intelligence Apps... 69

4.1 Final Design ... 69

4.1.1 Final Design of Semantic Recipe Integration with Mendix (A3.8) 69

4.1.2 Final Design of Recipe-TD Matcher (A3.9) .. 72

4.1.3 Final Design of Mendix Recipe Orchestrator (A3.10) 74

4.2 First Implementation .. 75

4.2.1 First Implementation of Semantic Recipe Integration with Mendix (A3.8) . 75

4.2.2 First Implementation of Recipe-TD Matcher (A3.9) 77

4.2.3 First Implementation of Mendix Recipe Orchestrator (A3.10) 78

5 Conclusions .. 84

6 References ... 85

7 ANNEX I – Sample Recipe for UC4 ... 86

8 ANNEX II – Performance and Scalability Evaluation of the Mapping Template
Component ... 92

8.1 GTFS Madrid Benchmark .. 92

8.2 Knowledge Graph Construction Challenge ... 94

9 ANNEX III – Evaluation of UC2 DataOps Pipeline on Different Deployment Templates
 97

9.1 Conversion Time and Input Size .. 97

9.2 Memory and CPU Utilisation ... 98

9.2.1 Temurin – GraalVM – GraalVM-Native ... 98

9.2.2 Spring-Temurin – Spring-GraalVM – Spring-GraalVM-Native 99

9.2.3 Temurin – Spring-Temurin .. 100

9.2.4 GraalVM – Spring-GraalVM ... 101

9.2.5 Native – Spring-Native .. 102

9 ANNEX III – Sample Recipe for UC4

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

LIST of FIGURES

Figure 1-1: Continuous Semantic Integration for SmartEdge .. 2
Figure 1-2: Continuous Semantic Integration enabled by SmartEdge WP3 artefacts 3
Figure 2-1: Semantic models in SmartEdge .. 10
Figure 2-2: Recipe model extended with NLQ .. 11
Figure 2-3: LLM-driven approach to address user’s requirements in Recipe development
 .. 12
Figure 2-4: Standardized Semantic Interfaces in SmartEdge. .. 13
Figure 2-5: Repository for Thing Descriptions and OPC UA Nodesets 15
Figure 2-6: Mendix Toolchain ... 15
Figure 2-7: Manufacturing illustration of streaming semantic media service 16
Figure 2-8: Factory schematic and corresponding 2D occupancy map 17
Figure 2-9: Overview of SmartEdge Schema .. 18
Figure 2-10: Graphical representation of sample Recipe for smart factory application in
UC4 ... 19
Figure 2-11 Virtual Scene with Virtual Car ... 27
Figure 2-12: Production Module with its Virtual Counterpart and OPC UA Information
Model from UC4 ... 28
Figure 2-13: Thing Description Upload and Retrieval via TDD API 29
Figure 2-14: Mendix toolbox for WoT client .. 29
Figure 3-1: DataOps Toolbox related artefacts and their relation 32
Figure 3-2: Deployment options for the DataOps Toolbox .. 33
Figure 3-3: Declarative semantic conversion process for interoperability 34
Figure 3-4: DataOps Pipeline .. 34
Figure 3-5: Final workflow for generic knowledge conversion enabled by a DataOps
pipeline ... 36
Figure 3-6: Example of a Camel route written using the Java domain specific language
 .. 38
Figure 3-7: Overview of a DataOps pipeline integrating different components............ 39
Figure 3-8: DataOps Deployment Templates ... 42
Figure 3-9: Example source Kamelet that is used to read the status of the swarm and
then forward it to a target node .. 44
Figure 3-10: MTL mapping to convert XML data to RDF Turtle 47
Figure 3-11: XML input data and corresponding RDF Turtle representation obtained by
applying the mapping template ... 47
Figure 3-12: On top, an example of defining multiple readers statically within a mapping.
On the bottom, the new possibility of providing multiple readers dynamically from
outside the mapping. .. 48
Figure 3-13: MTL to RML transformation process ... 49
Figure 3-14: An example RML mapping (above) and the corresponding automatically
generated MTL mapping (below). .. 49
Figure 3-15: Example of a ChimeraResourceBean defined using XML 51
Figure 3-16: An example SPARQL SELECT and ASK query .. 52
Figure 3-17: Example Chimera route that performs a SPARQL select query and returns
the result as JSON ... 52

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

Figure 3-18: DataOps pipeline defined to demonstrate the deployment templates. ... 56
Figure 3-19: Karavan component palette showing the Chimera graph, mapping-template
and rml components .. 59
Figure 3-20: Low-code DataOps Configuration Karavan plugin interface 60
Figure 3-21: Example of a ChimeraResourceBean that holds the lifting MTL mapping file
defined through Karavan .. 60
Figure 3-22: Example YAML Camel using Chimera components produced by the Visual
Studio Code Karavan plugin.. 61
Figure 3-23: Example DataOps pipeline for the semantic conversion of radar data 63
Figure 3-24: Example logs monitoring the execution of the DataOPs pipeline 64
Figure 3-25: DataOps pipelines enabling support for OPC UA Nodesets in the A3.3
artefact ... 68
Figure 4-1: Mendix Studio Pro: design time App environment...................................... 70
Figure 4-2: Semantic Recipe Integration. ... 71
Figure 4-3: W3C Thing Description core vocabulary (source:
https://www.w3.org/TR/wot-thing-description/) .. 72
Figure 4-4: Matchmaking between the capabilities required in the Recipe and the nodes
available in the Swarm at design time ... 73
Figure 4-5: Visual representation of the main concepts of the SmartEdge semantic
Recipe model, from Artefact 3.1 .. 73
Figure 4-6: Orchestration of Mendix applications in A3.10, based on SmartEdge Recipes.
 .. 75
Figure 4-7: Snippet of a semantic Recipe for a test Lamp application. 76
Figure 4-8: JSON-LD snippet of n interaction detail in a sample Recipe. 76
Figure 4-9: Mendix flow of a sample application ... 76
Figure 4-10: Example of a Recipe snippet for a healthcare physiotherapy Recipe in Turtle
format. .. 78
Figure 4-11: Snippet of a TD description of a device including details about its
capabilities, in Turtle format. ... 78
Figure 4-12: Mendix flow example, connecting to a TD counter. 79
Figure 4-13: Reading a property from a TD description from JS code in a Mendix flow.
 .. 80
Figure 4-14: Writing back to a TD exposed property using JS code inside Mendix. 80
Figure 4-15: Accessing TD-retrieved properties from a Mendix-created application page.
 .. 81
Figure 4-16: Accessing the Node-WoT server, counter example exposed through a TD.
 .. 82
Figure 4-17: Mendix App frontend. TD accessed through the application during runtime
 .. 82
Figure 4-18: Runtime invoke action: TD property read through the Mendix runtime .. 83
Figure 7-1: Sample Recipe snippet for smart factory application in UC4 91
Figure 8-1: Evaluation on the GTFS Madrid Benchmark between mapping-template and
morph-kgc ... 93
Figure 8-2: Evaluation on the KGCW Challenge for GTFS-scale and GTFS-heterogeneity
 .. 95
Figure 8-3: Comparison on GTFS-Scale 1 to evaluate the overhead of RML compilation in
the mapping-template .. 95

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

Figure 8-4: Evaluation on the KGCW Challenge for mappings, records, join parameters
 .. 96
Figure 8-5: Evaluation on the KGCW Challenge for empty values, duplicates and
properties parameters .. 96
Figure 9-1: Comparison of conversion time and input size over time for Temurin and
GraalVM .. 97
Figure 9-2: Comparison of conversion time and input size over time for Native 98
Figure 9-3: CPU Comparison of Temurin, GraalVM and Native 99
Figure 9-4: Memory Comparison of Temurin, GraalVM and Native 99
Figure 9-5: CPU Comparison of Spring Temurin, Spring GraalVM and Spring Native
images ... 100
Figure 9-6: Memory Comparison of Spring Temurin, Spring GraalVM and Spring Native
images ... 100
Figure 9-7: CPU Comparison of Temurin and Spring Temurin 101
Figure 9-8: Memory Comparison of Temurin and Spring Temurin 101
Figure 9-9: CPU Comparison GraalVM and Spring GraalVM .. 102
Figure 9-10: Memory Comparison GraalVM and Spring GraalVM 102
Figure 9-11: CPU Comparison Native and Spring Native .. 103
Figure 9-12: Memory comparison Native and Spring Native 103

LIST OF TABLES
Table 1-1: Tools for Continuous Semantic Integration. ... 5
Table 1-2: WP3 Key Performance Indicators for CSI tools and related artefacts. 6
Table 3-1: Analysis of PROs and CONs for different deployment alternatives 41
Table 3-2: Comparison of deployment templates for the same DataOps pipeline 57
Table 3-3: Average/Max/Min metrics for conversion time and input size for each pipeline
deployment tested. .. 65

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

1

1 INTRODUCTION

Deliverable 3.2 provides the final design and first implementation of tools for
Continuous Semantic Integration (CSI) in the SmartEdge project. In this deliverable we
report the status of the work in Work Package 3 (WP3), which aims to provide CSI via
three tasks: (i) edge semantics with standardized semantic interfaces for IoT devices; (ii)
a DataOps toolbox for continuous semantic integration, and (iii) a declarative and low-
code approach for creation and orchestration of swarm apps based on Recipes. To this
goal, we design and implement concepts for these three tasks considering the
requirements from SmartEdge use cases. The final design is based on its first iteration
described in deliverable D3.1 and the final list of requirements reported in D2.2. This
deliverable also discusses the first implementation of tools for Continuous Semantic
Integration to support the first lab tests and validation phase within WP6. D6.1 provides
a validation and report on how the developments described in this deliverable match
the SmartEdge requirements defined in D2.2 and the complete set of SmartEdge KPIs.

The following introduction explains the concept of Continuous Semantic Integration
(CSI) defined and implemented by WP3 in SmartEdge. We present the different tasks
that are required to enable CSI and the associated artefacts that SmartEdge implements
to support it. Moreover, we discuss the mapping between KPIs and artefacts and the
relations between WP3 and other technical work packages. Finally, we outline the
structure of the deliverable.

1.1 CONCEPT OF CONTINUOUS SEMANTIC INTEGRATION

The Internet of Things (IoT) together with edge intelligence brings several benefits
across various industries and everyday life. These technologies enable the seamless flow
of data between devices and systems, leading to improved efficiency and productivity.
They can lead to cost savings by optimizing operations. IoT devices generate a vast
amount of data. This data can be analysed to gain valuable insights and lead to better
decision-making systems. But all these promises come with a hypothesis that the data
generated with IoT devices can be easily consumed by intelligent applications. This is
not always true, and very often it is a challenge. The reason is that IoT devices have
different capabilities, communicate via different protocols, exchange information in
different formats, and may change over time. For all these reasons, it is not an easy task
to integrate data generated by IoT devices and make them consumable for application
developers. Figure 1.1 introduces the concept of Continuous Semantic Integration in the
SmartEdge project. It is a building block between IoT devices and added-value apps.
Continuous Semantic Integration (CSI) provides access to horizontally and vertically
integrated data via standardized communication interfaces. It also provides semantics
about data, devices, and applications, and runs on the edge. For example, capabilities of
devices are described in a machine-interpretable way with standardized vocabularies.
Devices’ data is also semantically described and accessible via unified and standardized
interfaces. CSI is a prerequisite for the low-code application development in a way that

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

2

it facilitates semantic discovery of device skills and provides matchmaking of skills with
application requirements. It also integrates data with different formats and semantics,
and provides a uniform and standardized access to it. With CSI, the SmartEdge project
aims to enable an easy development of low-code applications.

Figure 1-1: Continuous Semantic Integration for SmartEdge

The concept of CSI introduces several innovative contributions to the SmartEdge project.
Semantic models in CSI formalize key concepts like Swarm Node, Device, Capability, and
Recipe, among others. Through CSI, Recipes are introduced as a practical means to
specify, develop, and deploy low-code swarm applications. Built on standardized models
and interfaces, CSI promotes interoperability, automates low-code toolchains, and
enhances the reusability of Recipe-based applications. CSI also incorporates the
DataOps toolbox to enable a declarative specification of pipelines to guarantee semantic
interoperability between swarm or device nodes. It supports pipeline deployment
across diverse environments and provides a low-code tool for pipeline definition.
Additionally, CSI integrates a Knowledge Graph Repository, a specialized semantic
repository designed for storing, retrieving, and managing knowledge artefacts. This
repository interfaces with two key standards: W3C Web of Things1 and OPC UA2, and
stores data in RDF format. This format allows for the integration of multiple semantic
vocabularies, supporting a range of SmartEdge use cases. Crucially, it enables an
effective application of large language models (LLMs) on this data, simplifying the use of
semantic models in low-code application development and enhancing the usability of
the SmartEdge low-code toolchain. By addressing complexity and usability, common
barriers to the adoption of semantic technologies, CSI tackles these challenges
effectively.

The following sections of this document break down the functionalities of CSI into a set
of SmartEdge artefacts, each addressing a specific function within CSI. We also cover the
design and initial implementation of these artefacts.

11 https://www.w3.org/WoT/
2 https://opcfoundation.org/about/opc-technologies/opc-ua/

https://www.w3.org/WoT/
https://opcfoundation.org/about/opc-technologies/opc-ua/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

3

1.2 CONTINUOUS SEMANTIC INTEGRATION IN SMARTEDGE

This section provides an overview of the designed integration of WP3 artefacts for
enabling Continuous Semantic Integration for a set of nodes that are used to compose
a swarm and execute a swarm intelligence application. The diagram in Figure 1-2
summarises the relation among the different artefacts and we discuss their integration
considering the different tasks required to adopt the artefacts for a certain use case.
Each artefact is described in detail within a dedicated section in the rest of the
deliverable.

Figure 1-2: Continuous Semantic Integration enabled by SmartEdge WP3 artefacts

Interoperable description of nodes and their capabilities
The first task is based on an interoperable description of the nodes (devices) available
for a certain use case, i.e., the list of nodes that can be selected to form a swarm and
execute a swarm intelligence app. The description of the nodes should be compliant
with the SmartEdge Semantic Models (A3.1) and stored within the Knowledge Graph
Repository (A3.3). The Knowledge Graph Repository provides support for both W3C
Thing Descriptions and OPC UA Nodesets.

Enable standardized communication interfaces for relevant nodes
The second task is associated with the need for enabling communications among nodes
leveraging different protocols. Standard communication interfaces can be enabled with
the support of the artefact Middleware with Standardized Interfaces (A3.2). Moreover,
the Semantic Media Service (A3.11) is defined to support the efficient exchanges of data
among nodes that do not require the intermediation of the orchestrator.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

4

Define mediated data exchanges ensuring semantic interoperability
The DataOps tool provides a set of modular and configurable components (A3.5) that
can be used to define a pipeline for mediated data exchanges among nodes in the
swarm. Such a pipeline supports a semantic conversion process and guarantees not only
the exchange of data among nodes, but also the required schema and data
transformations for semantic interoperability, e.g., considering the semantics a specific
domain ontology (A3.1). These pipelines may also support the static management of
nodes, e.g., the conversion of OPC-UA nodes description for their insertion/retrieval
from the Knowledge Graph Repository (A3.3). Moreover, they can support the execution
of swarm intelligence applications by supporting the communication between the
orchestrator and specific nodes in the swarm.
The definition of pipelines can be simplified by low-code approaches via artefact Low-
code DataOps Configuration (A3.7).

Support execution of mediated data exchanges between nodes on Cloud and Edge
The execution of Data Ops pipeline should be flexible w.r.t the deployment environment
of the different nodes. The artefact DataOps Deployment Templates (A3.6) supports the
execution of pipelines in different deployment environments to enable the
communication and data management across different types of nodes.

Define interoperable Recipes for swarm intelligence apps
In SmartEdge, a Recipe serves as an application template. It formally outlines the
application requirements based on the Recipe Model (A3.1). Additionally, it specifies the
steps that nodes (devices) must follow to implement a swarm application. These steps,
along with the application logic, can be defined using a low-code approach (A3.4). As an
application template, a Recipe can be reused to create multiple applications. Therefore,
CSI facilitates the discovery and retrieval of existing Recipes within the low-code
environment (A3.8). Once a suitable Recipe is identified, then the low code developer
can customize it and finish the design of the application.

Orchestrate interoperable Recipes on a swarm
Semantic Recipes in SmartEdge, described using the models from A3.1, can be used as
the basis for low code developers to build their applications, using artefact 3.8. In order
to match the capabilities required by the semantic Recipes, Artefact A3.9 provides the
ability to match them with the affordances of available nodes in the swarm. Thanks to
the matching features of A3.9, then specific nodes can be bound to the runtime
environment, to be later enacted and orchestrated through artefact A3.10.

1.3 CONTINUOUS SEMANTIC INTEGRATION ARTEFACTS

Table 1.1 describes the complete list of artefacts representing Continuous Semantic
Integration tools developed by SmartEdge. The table summarizes the role of the
artefact, where it is described within the document and the current implementation
status.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

5

Table 1-1: Tools for Continuous Semantic Integration.

ID Component Lead Section Description Implementation
Status

A3.1 SmartEdge
Semantic
Models

SAG 2.1.1,
2.1.2,
2.2.1,
2.2.2

Common data structures to
represent the data from diverse
machines, applications, and
swarms.

Available for the
first release.
Second release
planned.

A3.2 Middleware
with
Standardized
Interfaces

SAG 2.1.3,
2.2.3

Middleware provides
standardized data access to the
devices’ data.

Available for the
first release.
Second release
planned.

A3.3 Knowledge
Graph
Repository

SAG 2.1.4,
2.2.4,
3.3.2

Specialized semantic repository
designed for the storage,
retrieval, and management of
standardized knowledge artefacts

Available for the
first release.
Second release
planned.

A3.4 Mendix
Toolchain

SAG 2.1.5,
2.2.5

A programming environment to
create Recipes in a low-code
manner.

Available for the
first release.
Second release
planned.

A3.5 DataOps
Pipeline
Components

CEF 3.1.1,
3.2.1

Set of components to define
DataOps pipelines and reusable
pipelines defined for SmartEdge
use cases.

Available for the
first release.
Second release
planned.

A3.6 DataOps
Deployment
Templates

CEF 3.1.2,
3.2.2

Templates for DataOps pipeline
deployment on Cloud and Edge
environments.

Available for the
first release.
Second release
planned.

A3.7 Low-code
DataOps
Configuration

CEF 3.1.3,
3.2.3

Artefacts and tools to support the
low-code definition of DataOps
pipelines.

Available for the
first release.
Second release
planned.

A3.8 Semantic
Recipe
Integration
with Mendix

HESSO 4.1.1,
4.2.1

Integration of semantic Recipe
directory with Mendix for
discovery and retrieval of existing
Recipes, related to specific swarm
tasks.

Available in the
second release,
currently being
implemented.

A3.9 Recipe-TD
Matcher

HESSO 4.1.2,
4.2.2

Implementation of matching of
Recipes and thing descriptions
according to TD affordances and
swarm Recipe specifications

Available in the
second release,
currently being
implemented.

A3.10 Mendix
Orchestrator

HESSO 4.1.3,
4.2.3

Orchestrator of Mendix flows
following a given Recipe and a
given set of swarm nodes
previously matched

Available in the
second release,
currently being
implemented.

A3.11 Semantic
Media Service

DELL 2.1.5,
2.2.5

Artefact to stream semantic
graphs between nodes in the
swarm, which will facilitate a
shared environmental context.

Available in the
second release,
currently being
implemented.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

6

1.4 MAPPING KPIS AND ARTEFACTS

KPIs relevant for WP3 are shown in Table 1-2 and mapped with relevant artefacts
designed and implemented to address them. The progress towards KPIs for the first
release of the CSI tools is summarized in this table by referencing specific sections of the
deliverable.

Table 1-2: WP3 Key Performance Indicators for CSI tools and related artefacts.

KPI
number

Description Related artefacts

K2.1 Semantic integration should be provided for at
least 4 brownfield protocols and more than 3
green field devices.

A3.2

Status
Update

Semantic integration of communication protocols has been analyzed in
Section 3.4, and initially designed in Section 3.5 of D3.1. The final design
has been provided as the middleware with Standardized Semantic
Interfaces, see Section 2.1.3. Initially, the middleware with Standardized
Semantic Interfaces would support four brownfield protocols and more
than three greenfield devices. We proceeded with the design and
implementation for greenfield protocol support as planned (Section
2.2.3). However, the use case requirement analysis indicated that
supporting brownfield protocols was unnecessary. Instead, in use cases
UC1 and UC4, it became clear that the SmartEdge middleware should also
extend protocol integration within a virtual environment. As a result, our
design for the middleware with Standardized Semantic Interfaces now
includes support for two additional protocol integrations (OPC UA and
MQTT3) for Unity4, the preferred virtual environment in SmartEdge.

K2.2 Message conversion performances increased
by at least 80% wrt. the baseline described in
[Scrocca21] (140ms conversion time with
50KBytes XML payloads)

A3.5, A3.6

Status
Update

Analysis of existing processors for declarative mapping languages to
identify relevant components and operations affecting the performance
of the semantic conversion process (cf. design of the mapping processor
for a DataOps pipeline reported in D3.1). Enhancement of the Mapping
Template tool to support the optimized execution of declarative mapping
rules for message conversion (both lifting and lowering) in a DataOps
pipeline (cf. Section 3.2.1). Performance tests were performed to compare
semantic conversion with the Mapping Template tool and existing
processors for knowledge graph construction (cf. Section 3.2.1.3). Testing
was performed using the DataOps pipeline for traffic data from UC2 (c.f.
Section 3.3.1), and the JSON stream payloads (3Kb) were converted to RDF
in less than 4 milliseconds on average. Further tests will be executed with
bigger payloads for the second release.

3 https://mqtt.org/
4 https://unity.com/

https://mqtt.org/
https://unity.com/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

7

K2.3 Semantic integration scalability (in terms of
maximum concurrent requests and data
velocity) increased by at least 50% wrt. the
baseline described in [Scrocca21] (100
requests per second with XML payloads of
around 50 Kbytes on commodity hardware) on
a single converter instance (T3.2)

A3.5, A3.6

Status
Update

Analysis of different deployment options for a DataOps pipeline to
minimise resource usage of a single instance and enable flexible scalability
for increasing demand (cf. Section 3.2.2). Testing was performed using the
DataOps pipeline for traffic data from UC2 (c.f. Section 3.3.1), and the
JSON stream (10 req/s, 3Kb) was converted without dropping requests.
The average conversion time of 4ms should enable processing of 250
req/s. Further tests will be executed with bigger payloads and increased
number of concurrent requests for the second release.

K2.4 Reduced complexity and configuration time
(at least 70%) of swarm intelligence Apps
through the automatic instantiation and
orchestration of template-based
specifications.

A3.8, A3.9, A3.10

Status
Update

Simplification of the configuration process is part of the facilitated use of
semantic Recipes, matching and orchestration, as described in Section 4.
These metrics will be evaluated in the context of A3.10 orchestration with
the Mendix runtime, expected to be completed for the second release.

1.5 RELATIONS TO WP4 AND WP5

In this section, we discuss the designed interactions between the artefacts for
Continuous Semantic Integration (CSI), developed by WP3, and the ones developed
within WP4 and WP5. Additional details on the referred artefacts can be found in D4.2
and D5.2

The SmartEdge WP4 focuses on the networking aspects of a swarm and leverages the
semantic representations defined by WP3 (A3.1) to exchange interoperable
representations of the information on nodes composing a swarm. Additionally, the Task
Orchestrator (A5.3.2) uses both the Knowledge Graph Repository (A3.3) and the
Distributed Database for Network Information – Address Resolution Table (A4.5) to
discover the available swarm nodes together with their semantic description and IP
addresses. This information is then provided to the Swarm Coordinator (A4.2) to
establish the communication to the Node Managers (A4.3) to request the designated
nodes to join the swarm.

To ensure interoperability between the developments in WP3 and WP5, the Mendix
toolchain from WP3 will be enhanced to orchestrate nodes within Recipes managed by
the SmartEdge runtime engine, developed in WP5. The Mendix toolchain will
communicate with the WP5 Orchestrator via Zenoh, sending tasks to the orchestrator,
subscribing to retrieve execution results, and passing the data to subsequent Recipe

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

8

steps. This integration will enable seamless interaction between SmartEdge nodes,
regardless of whether they are controlled by the SmartEdge runtime (WP5) or the
Mendix runtime (WP3).

Within WP5, the DataOps toolbox is also used as part of A5.1 to implement the Data
Stream Fusion artefact (A5.1.4). Indeed, a set of DataOps pipelines can be customized
to process heterogeneous data sources and integrate them according to a shared
semantic representation.

1.6 STRUCTURE OF THE DOCUMENT

The document has the following sections. Section 2 provides the final design and the
first release implementation for Standardized Semantic Interfaces in SmartEdge. This
work is primarily the subject of Task 3.1. Section 3 outlines the final design and first
release of the DataOps toolbox in SmartEdge, which is in the scope of Task 3.2. Section
4 reports the current contribution in Task 3.3 on a low-code approach for orchestration
of swarm edge applications; and finally, Section 5 closes the document, highlighting
some of the conclusions found and discussing the next steps in WP3.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

9

2 STANDARDIZED SEMANTIC INTERFACES FOR SMARTEDGE

Standardized Semantic Interfaces are fundamental in SmartEdge, providing access to
integrated data and metadata through standardized communication interfaces. This
section discusses the final design and initial implementation of the artefacts dedicated
to these interfaces, as part of Task 3.1 of SmartEdge WP3. Specifically, these artefacts
include:

▪ A3.1: SmartEdge Semantic Models
▪ A3.2: Middleware with Standardized Interfaces
▪ A3.3: Knowledge Graph Repository
▪ A3.4: Mendix Toolchain

A3.1 offers common data structures to represent data from various machines,
applications, and swarms. This work is based on two widely adopted standards: W3C
Web of Things and OPC Unified Architecture (OPC UA). The main tasks, as defined by
D2.1 and refined in D2.2, are to enable easy low-code application development,
facilitating formal description of nodes (devices), as well as semantic discovery of device
skills and matching these skills with application requirements. This functionality is
applied uniformly across different use case domains, regardless of the standards used.
A3.1 also formalizes key concepts in SmartEdge, such as Swarm Node, Device, Capability,
and Recipe.
A3.2 and A3.3 are infrastructure artefacts that enhance the functionalities of other
artefacts. A3.2 provides access to data, while A3.3 offers access to metadata (semantics)
from any SmartEdge node or device via unified and standardized interfaces, supporting
easy low-code application development.
A3.4 is a toolchain that relies on A3.1, A3.2, and A3.3 to facilitate low-code application
development. Additionally, this artefact integrates an interface for large language
models (LLMs), simplifying the use of semantic models in low-code application
development and enhancing the usability of the SmartEdge low-code toolchain.

2.1 FINAL DESIGN

2.1.1 Final Design of SmartEdge Schema (A3.1)

This section provides an overview of all SmartEdge semantic models and then briefly
mentions the final design of SmartEdge schema. SmartEdge semantic models are the
artefacts that provide common data structures to represent the data from diverse
machines, applications, and swarms etc. Existing standards such as W3C Web of Things,
OPC UA, and existing domain models are reused to create SmartEdge semantic models.
Reusing the standards provides harmonized interfaces for diverse machines and use
cases and enables interoperability. The project develops several semantic model
artefacts such as:

▪ semantic models for representing data from diverse nodes using Web of Things
Thing Description and OPC UA standard. The node semantic models describe the
capabilities offered by a node, its static and dynamic attributes required by the
applications;

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

10

▪ semantic models for representing SmartEdge applications using Recipe model.
The Recipe model describes the application requirements such as capabilities on
the nodes required to execute the application, the required static, and dynamic
attributes of the nodes;

▪ semantic models for representing the runtime attributes of a swarm using
SmartEdge Schema will be a new semantic model that will be developed in the
project. SmartEdge schema describes a swarm in runtime. It describes swarm
attributes such as nodes involved in the swarm currently, Recipe that is being
executed by the swarm, status of swarm execution etc.

Figure 2-1 gives the overview of semantic models in SmartEdge project. Together, all the
semantic models provide common data structures from devices to applications.

Figure 2-1: Semantic models in SmartEdge

The final design of SmartEdge schema is presented in D3.1 section 3.1. The details about
the first implementation of SmartEdge schema are presented in this deliverable in
section 17.

2.1.2 Final Design of Recipe model (A3.1)

The Recipe model defined in D3.1 is used to define applications in SmartEdge use cases.
A Recipe is basically a semantic definition of an application template. It defines the
requirements of an application such as the skills / capabilities a node needs in order to
execute the applications and interaction between them. This information is needed in a
Recipe to discover the right nodes to execute it. The interaction is defined at the higher
abstraction in the Recipe model. It just defines which capabilities interact with each
other, however the business logic during the interactions is out of scope of Recipe
semantic definition. This higher abstraction makes the Recipe model flexible and
enables it to be useable in different domains and different use cases. For example,
Recipe model can be used to model application in SmartEdge UC1 which is based on
W3C WoT standard and UC4 which is based on OPC UA standard. The example Recipes
are presented in the first implementation of Recipe model in section 18.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

11

The model defined in D3.1 is extended further to make it usable with AI technologies
such as Large Language Models (LLMs). The changes are depicted in Figure 2-2.

Figure 2-2: Recipe model extended with NLQ

Two new terms are added to the model: Serial Number and NLQ (Natural Language
Query).

An application defined using a Recipe can have multiple interactions between different
nodes. The Serial Number attribute uniquely identifies an interaction between nodes.

A capability in a Recipe specifies the skills a node should have in order run the application
defined by the Recipe. The capability is formally represented in RDF format in a Recipe.
However, now we also added a new attribute to a capability called NLQ, which can be
used to describe the capability requirements in natural language format that can be
easily used by an LLM. Therefore, the requirements in a Recipe can be specified either
formally in RDF format or in natural language using the NLQ. The purpose of an NLQ is
that an LLM can understand it and search for a matching thing / machine which can fulfill
the requirements specified in Recipe. With this approach, we could leverage LLMs to
convert the NLQ into SPARQL query to search for a required thing / machine.
Since the skills of a thing / machine can be defined using the XML-based OPC UA
standard, we need to convert these skills into the RDF format. This conversion allows us
to use SPARQL for discovering skills that meet the required capabilities of a Recipe. To
achieve this, we have implemented the work from [Schiekofer19] in the DataOps tool,
as detailed in Section 3. Our approach allows us to construct an OPC UA ontology to
describe skills and match them with the required capabilities. Given the complexity of
the OPC UA ontology, we leverage LLMs to formulate SPARQL queries, which are then
used to match skills against capabilities. It makes the application development process

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

12

more intuitive and interactive to a user as the user can specify the requirements for the
application in natural language.
The use of LLMs has not been originally planned in the description of work in the
SmartEdge project. However, meanwhile the use of LLMs and AI, in general, with graph
data and semantic models has been increasing significantly. Thus, in the SmartEdge
project we started the development of an LLM based approach for Recipe
implementation. Currently it is being tested with OPC UA standard. For this purpose,
Mendix is extended with an LLM-based application called OPC UA copilot which provides
a natural language interface over OPC UA knowledge graphs (A3.3). The OPC UA copilot
converts the NLQ into a SPARQL query, executes that query on the underlying OPC UA
knowledge graph and returns the results to Mendix to implement the application
specified by a Recipe. The LLM driven approach is shown in Figure 2-3.

Figure 2-3: LLM-driven approach to address user’s requirements in Recipe development

The workflow, which we are implementing for discovery purposes with LLMs in Mendix
(MX), is performed in the following steps:

1) A User or a Recipe developer expresses his/her requirements in natural

language.

2) An LLM interface (integrated in MX) produces a SPARQL query. The query

captures user’s requirements.

3) Repository evaluates the query and provides answer to MX.

4) An extension of MX will generate a MX component, which connects to a node

via OPC UA standardized interface (A3.2).

5) Process will repeat for other capabilities in a Recipe.

2.1.3 Final Design of Middleware with Standardized Semantic Interfaces (A3.2)

Standardized semantic interfaces provide a common way to access the devices' data

from the application level. For the different use cases covered by the project, in

deliverable D3.1 we identified a need for communication across diverse protocols, such

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

13

as OPC UA, MQTT, DDS5, and Bluetooth (BLE). Ensuring interoperability at the protocol

level is essential to make use of these interconnected systems.

To overcome the challenges of multi-protocol device communication and to enable

interoperability at the protocol layer, we envision using a middleware solution that

unifies the messages across different protocols and enables interoperability as shown in

Figure 2-4. The messages from different protocols being unified at the middleware layer

allow the dataflow vertically and horizontally and, also, enable unified access to the data

from the application layer.

Figure 2-4: Standardized Semantic Interfaces in SmartEdge.

This feature will be delivered in the form of a Docker container, containing Zenoh router

and a set of plugins and backend libraries to support use case specific communication

protocols. In the first iteration, Zenoh router is extended with MQTT and DDS as

southbound interfaces and REST as a northbound interface.

Initially, the project proposal outlined that the middleware with Standardized Semantic

Interfaces would support four brownfield protocols and more than three greenfield

devices (see KPI K2.1). For greenfield protocol support, we proceeded with the design

and implementation as planned (see Section 2.2.3). However, the use case requirement

analysis revealed that supporting brownfield protocols was unnecessary. Instead, in use

cases UC1 and UC4, it became evident that the SmartEdge middleware should also

extend protocol integration within a virtual environment. Consequently, our design for

the middleware with Standardized Semantic Interfaces now includes support for two

additional protocol integrations (OPC UA and MQTT) for Unity, the preferred virtual

environment in SmartEdge (Figure 2-4). Unity is used in SmartEdge in Use Case 1 and

Use Case 4.

5 https://www.dds-foundation.org/

https://www.dds-foundation.org/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

14

In virtual environments, interoperability and communication interfaces are also use

case-dependent, much like in real-world scenarios. For instance, in SmartEdge Use-Case

1, interoperability is achieved using Thing Descriptions with protocol bindings like

MQTT. In contrast, Use Case 4 utilizes the OPC UA standard.

In Use Case 1 (UC1), a "Thing" in a virtual world exposes its interfaces via a Thing

Description (TD) with an MQTT binding, which abstracts whether the thing is virtual or

physical. This layer of abstraction enables any component in the SmartEdge ecosystem,

including the SmartEdge Recipe model and the Mendix toolchain, to use virtual things

in virtual worlds in exactly the same way as physical things with the same Thing

Description. The (Remote) Rendering Runtime is responsible for managing the

lifecycle—including activation and deactivation—of Thing Descriptions associated with

virtual things (see Example in previous subsection).

In Use Case 4 (UC4), the OPC UA standard is employed to describe a "Thing" and facilitate
data communication. Unity serves as the Industrial Metaverse environment for virtual
commissioning. The low-code runtime interacts with Unity via the OPC UA protocol.
Consequently, in SmartEdge, the middleware with standardized semantic interfaces also
integrates the low-code environment with the virtual environment using the OPC UA
protocol, as illustrated in Figure 2-4.

2.1.4 Final Design of Knowledge Graph Repository (A3.3)

SmartEdge Knowledge Graph Repository is a specialized semantic repository designed
for the storage, retrieval, and management of standardized device descriptions. The
repository supports W3C Web of Things and OPC UA standard. For example, a device
can be described either with a W3C Thing Description (TD) or with an OPC UA Nodeset.

In both cases, the device description can be retrieved via an interface of the Knowledge
Graph Repository. Figure 2-5 shows two standardized interfaces of the SmartEdge
Knowledge Graph Repository. The repository implements Thing Description Directory
(TDD) API, which is a standardized API for TDs6. For OPC UA, a standardized API to access
data in a knowledge graph does not exist. Still, in both cases we provide a SPARQL
RESTful interface. These SPARQL interfaces will be used for discovering devices, which
can be used in the matchmaking process when implementing SmartEdge Recipes.
Different Triplestore, i.e., databases for RDF graphs, can be configured for A3.3 assuming
they are compliant with the SPARQL protocol7. SmartEdge Knowledge Graph Repository
will be offered as a standalone feature.

It will be also possible to integrate the feature with other features, e.g., the Mendix
Toolchain (A3.4) presented in Section 2.2.5. The discussion on how OPC-UA support is
enabled via DataOps pipelines is reported in Section 3.3.2, after the discussion of the
artefacts and features associated with the DataOps toolbox.

6 https://www.w3.org/TR/wot-discovery/
7 https://www.w3.org/TR/sparql11-protocol/

https://www.w3.org/TR/wot-discovery/
https://www.w3.org/TR/sparql11-protocol/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

15

Figure 2-5: Repository for Thing Descriptions and OPC UA Nodesets

2.1.5 Final Design of Mendix Toolchain (A3.4)

The Mendix toolchain comprises Mendix Integrated Development Environment (IDE)
and Mendix runtime. The Mendix IDE will be extended to support development of
SmartEdge Recipes. The Mendix runtime, is an interpreter that runs Mendix application
and provides the frontend to the user. This part will also be extended to facilitate
execution of SmartEdge Recipes. Mendix runtime will interact with A3.3 Knowledge
Graph Repository over the SPARQL RESTful interface for discovering devices and their
capabilities and executing the matchmaking process. Mendix runtime will also interact
with the A3.2 Middleware over REST to execute the Recipes on the selected devices.

Figure 2-6: Mendix Toolchain

Mendix extensions, allowing interactions with Knowledge Graph Repository and further
extensions will be provided in form of Mendix modules8. Mendix runtime itself will be
delivered in a form of Docker container, as shown in Figure 2-6.

8 https://docs.mendix.com/appstore/modules/

https://docs.mendix.com/appstore/modules/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

16

2.1.6 Final Design of Semantic Media Service (A3.11)

This artefact will facilitate the sharing of streaming semantic media between smart-
nodes in a swarm. Semantic media includes scene understanding graphs, which are
generated by artefact A5.1.2.2 described in D5.2. The artefact processes and fuses data
from smart-node depth cameras and LiDARs in the swarm to provide an abstract
semantic understanding of the objects in the environment from the nodes point of view.
The semantic scene graph is then streamed to this artefact, A3.11, as illustrated in Figure
2-7.

Figure 2-7: Manufacturing illustration of streaming semantic media service

A smart-node sharing semantic scene understanding graphs publishes the graphs as RDF
triples on the message topic /perception/scene_understanding/graph. The A3.11
artefact subscribes to these messages and consolidates the scene understanding graphs
from multiple smart-nodes to build up a 3D model of the environment based on multiple
viewpoints and Thing Descriptions from the TDD. The consolidated 3D environment
model is also represented as RDF triples in a semantic graph, which can then be
streamed to other smart-nodes in the swarm or used to generate other types of
semantic media such as a 2D occupancy map, which nodes can use to navigate the
environment, as illustrated in Figure 2-8.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

17

Figure 2-8: Factory schematic and corresponding 2D occupancy map

The semantic media service will allow smart-nodes to share knowledge about their
environment and build up a more complete internal model, providing them with
perspectives they cannot perceive directly. For example, in the factory scenario, several
ceiling-mounted cameras would be able to provide different perspectives on an
operational area. Another smart-node in the swarm would be able to subscribe to these
semantic graph streams and so perceive the operational area in-the-round, facilitating
the construction of a 3D model of the environment by the smart-node.

A smart-node finds the available streaming sources by first querying the TDD via its
SPARQL interface and returning all possible streaming smart-nodes in a given region. It
then directly subscribes to the source smart-nodes’ semantic graph stream. In this way
smart-node stream sources can be dynamically bound into the swarm. The artefact also
includes source and target components to facilitate the semantic graph stream, which
abstract the overlying message-oriented middleware; the only assumption is that the
middleware supports the publish and subscribe message paradigm.

2.2 FIRST IMPLEMENTATION

2.2.1 First Implementation of SmartEdge Schema (A3.1)

SmartEdge schema aims to formally define the important concepts of the SmartEdge
architecture which are used in swarm formation and execution. Purpose of the
SmartEdge schema is to enable following swarm functions:

▪ It can be used during design time for the configuration of a swarm;

▪ It can be used in run time for identifying the nodes with matching skills which

can join a swarm;

▪ It can be used to monitor the execution of a swarm (e.g., entry of a node into

swarm, exit of a node and replacing a node in swarm).

The SmartEdge schema defines the concepts that are common to all swarms regardless
of the use case applications, such as swarm co-ordinator, its interactions with a swarm
orchestrator, industrial knowledge graph to discover nodes with required capabilities

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

18

and nodes in the swarm. Detailed explanation about concepts is presented in D3.1.
While SmartEdge schema represents the runtime attributes of a swarm, the Recipe
model represents an application template. When a Recipe is instantiated then the
instance is considered as a swarm, which is dynamic and the nodes in the swarm can be
replaced with other suitable nodes in runtime. The relationship between the Recipe and
its corresponding swarm is captured in the SmartEdge schema using RecipeID class as
represented in Figure 2-9.

The Figure represents the concepts in the SmartEdge schema and the relationships
between them. The main concepts in the schema are the SmartEdge node, SmartEdge
smart node, swarm co-ordinator and the swarm orchestrator. SmartEdge smart node is
a subclass of SmartEdge node where the smart node has the capability to dynamically
join or leave the swarm. Each of these nodes has certain attributes and relationships
with other nodes which is depicted in Figure 2-9.

Figure 2-9: Overview of SmartEdge Schema

Each SmartEdge node has the attributes such as: node id, node capabilities, network
attributes, location, events it publishes and subscribes, security scheme to connect to
the node, its reachability state etc. which are characteristics of a node. A swarm
coordinator has attributes such as swarm-id, network attributes etc. as it manages the
swarm and connects to the nodes in the network. Swarm orchestrator has a relationship
to the Recipe which it runs through the swarm. The first version of SmartEdge schema
is implemented in RDF format and it can be found on the SmartEdge repository:
https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31.
SmartEdge use cases could use the schema to describe a swarm in their use cases.

2.2.2 First Implementation of Recipe Model (A3.1)

The Recipe model is finalized and it can be found on the SmartEdge GitHub:
https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31. Based
on the finalized Recipe model, a first implementation of the discovery with Recipes is

https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31
https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

19

done. The Recipe model is independent of standards (e.g., OPC UA, W3C WoT). The
nodes with matching capabilities that are implemented using OPC UA or W3C WoT can
be discovered and a Recipe can be implemented with them. Discovery of required nodes
is done by generating SPARQL queries from Recipes. The SPARQL queries are pre-
defined, and they are different for OPC UA and WoT. That is, we provided a set of
SPARQL queries which can discover matching nodes implemented with W3C WoT
standard. For Discovery of nodes from descriptions compliant with the OPC UA standard,
i.e., OPC UA NodeSets, we use latest AI technologies such as Large Language Models
(LLMs). This approach is described briefly in section 2.1.2. Based on the first
implementation of Recipe discovery with LLMs in Mendix, here we provide a few
example Recipes based on the W3C Web of Things Thing Descriptions and a Recipe for
UC4, which is based on the OPC UA standard.

2.2.2.1 Example Recipe for Smart Factory Application based on OPC UA Standard for UC4

Below we provide a simple example Recipe considering nodes described according to
the OPC UA standard. The Recipe is related to UC4 in SmartEdge. The sample Recipe
does not completely represent any UC4 application, rather it is part of an application
described in UC4. The purpose of the Recipe is to assemble a product in a manufacturing
unit. The application should load an empty tray into an assembly module of a
manufacturing unit where the product gets assembled in multiple steps by inserting 4
different types of blocks onto the tray. After assembly, the product should be unloaded
from the assembly module. The corresponding Recipe JSON-LD description for this
application is presented in Section 7 (Annex I) of this document.

The discovery of matching capabilities for the above Recipe can be done based on the
NLQ in the Recipe using a LLM application that is integrated into Mendix for discovery
of OPC UA data points. The above Recipe consists of the workflow depicted in Figure
2-10.

Figure 2-10: Graphical representation of sample Recipe for smart factory application in UC4

2.2.2.2 Example Recipe with W3C Web of Things Thing Descriptions

Below we provide a simple example Recipe. The Recipe is not part of any use case in
SmartEdge. We provide here a use case agnostic example which is easily
understandable. The purpose of the Recipe is to turn on or turn off a lamp based on the
proximity of a person or object to the lamp. The business logic for the application based

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

20

on Recipe is not part of the Recipe semantic model. When the Recipe is created in
Mendix then business logic can be added to it through Mendix nodes as shown in section
69. The created business logic will be part of the Mendix project. In this example, the
Recipe will be instantiated on things implemented with Web of Things standard which
have corresponding Thing Descriptions.

{
 "@context":[
 {
 "RecipeModel":"http://www.semanticweb.org/SmartEdge/RecipeModel/",
 "saref4bdlg": "https://saref.etsi.org/saref4bldg/",
 "saref": "https://saref.etsi.org/saref/",
 "iot": "http://iotschema.org/",
 "@id":"http://www.semanticweb.org/SmartEdge/RecipeModel/",
 "@type":[
 "http://www.w3.org/2002/07/owl#Ontology"
]
 }],
 "@type":[
 "RecipeModel:Recipe"
],
 "title":"Lamp control Recipe",
 "NLQ": "An application to turn off a lamp based on the proxmity of a person or an object",
 "RecipeModel:hasCapability":{
 "@type":[
 "iot:LightControl" , "iot:MotionControl"
]
 },
 "RecipeModel:hasIngredients":[
 {
 "status":{
 "@id":"b4493a89cfd4a062",
 "NLQ": "find a sensor which can detect motion in <room_x>",
 "description":"current status of the lamp",
 "@type":[
 "iot:MotionDetected",
 "RecipeModel:Ingredient"
],
 "RecipeModel:hasOutputData":{
 "type":"boolean"
 },
 "RecipeModel:operation":"RecipeModel:Retrieve",
 "iot:capability" :
 {"@type" : "iot:MotionControl"},
 "RecipeModel:interactsWith":[
 {
 "hasSerialNumber": "1",
 "@id": "bcfca6fc0f1c1e8b",
 "RecipeModel:operation":"RecipeModel:Update"
 }]}},
 {
 "toggle":{

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

21

 "@id":"bcfca6fc0f1c1e8b",
 "NLQ": "find a lamp which can be turned on and off in <room_x>",
 "description":"Turn the lamp on or off",
 "@type":[
 "iot:Toggle",
 "RecipeModel:Interaction"
],
 "RecipeModel:hasInputData":{
 "type":"boolean"
 },
 "iot:capability" :
 {"@type" : "iot:LightControl"},
 "RecipeModel:operation":"RecipeModel:Update"
 }}

In order to instantiate the sample Recipe, we should discover the things which have the
capabilities specified in the Recipe. In the sample Recipe, the capabilities are
MotionControl which can detect the motion in a room (with MotionDetected property)
and LightControl capability which can control the lamp in a room (with Toggle action).
The discovery can be done by generating the SPARQL queries from the Recipe
description manually (or by using an LLM which takes the NLQ in the Recipe as input and
automatically generates the SPARQL queries to discover the required things in case of
OPC UA).

2.2.2.3 Recipe Discovery

In order to instantiate an application based on a Recipe, we need to discover the nodes
which can match the requirements defined in the Recipe. Since the Recipe is an RDF
description, SPARQL queries can be used to discover the matching nodes. For this
purpose, SPARQL queries should be generated from the Recipe. The queries should be
executed on a knowledge graph where the semantic descriptions of nodes are stored.
For each standard (e.g., W3C WoT, OPC UA etc.), the queries can be pre-defined. That
is, in order to discover matching WoT Thing Descriptions (TD) from a Recipe a pre-
defined SPARQL query can be instantiated. The SPARQL queries shown in this section
will discover the matching nodes described with W3C WoT TDs which can run the lamp
control Recipe described above. The queries discover: (i) a WoT TD with MotionControl
capability which has interaction affordance to detect motion, (ii) another WoT TD with
light control capability which has interaction affordance to turn on or turn off a lamp.
Additionally, the queries search for both nodes located in the same building and the
same room.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX td: <https://www.w3.org/2022/wot/td/v1.1/>
PREFIX iot: <http://iotschema.org/>
PREFIX saref: https://saref.etsi.org/saref/
PREFIX saref4bdlg: <https://saref.etsi.org/saref4bldg/>

SELECT ?title ?id ?at ?iat ?op ?href
{
 ?s rdf:type td:Thing .
 ?s rdf:type ?thingType .

https://saref.etsi.org/saref/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

22

 ?s td:title ?title .
 ?s td:id ?id .

 ?s ?interaction ?interAff .
 ?interAff rdf:type ?at .
 ?o1 rdf:type ?iat .
 ?o1 td:forms ?b .
 ?b td:op ?op .
 ?b td:href ?href .

 FILTER (?at IN (td:PropertyAffordance, td:ActionAffordance, td:EventAffordance))
 FILTER (?thingType = iot:MotionControl) .
 FILTER (?iat IN (iot:MotionDetected)) .

OPTIONAL {?s saref4bdlg:isContainedIn "Room_1" . }
OPTIONAL {?s saref4bdlg:isSpaceOf "Building_1" . }
} LIMIT 100
SELECT ?title ?id ?at ?iat ?op ?href
{
 ?s rdf:type td:Thing .
 ?s rdf:type ?thingType .
 ?s td:title ?title .
 ?s td:id ?id .

 ?s ?interaction ?interAff .
 ?interAff rdf:type ?at .
 ?o1 rdf:type ?iat .
 ?o1 td:forms ?b .
 ?b td:op ?op .
 ?b td:href ?href .

 FILTER (?at IN (td:PropertyAffordance, td:ActionAffordance, td:EventAffordance))
 FILTER (?thingType = iot:LightControl) .
 FILTER (?iat IN (iot:Toggle)) .

OPTIONAL {?s saref4bdlg:isContainedIn "Room_1" . }
OPTIONAL {?s saref4bdlg:isSpaceOf "Building_1" . }
}
LIMIT 100

Below is an example WoT TD that is discovered from the SPARQL queries specified
above.

{

 "@context": ["https://www.w3.org/2022/wot/td/v1.1",
 {"saref4bdlg": "https://saref.etsi.org/saref4bldg/",
 "saref": "https://saref.etsi.org/saref/"}],

 "id": "urn:uuid:014139c9-b267-4db5-9c61-cc2d2bfc217d",
 "title": "MyLampThing",
 "@type": ["saref4bdlg:Lamp"],
 "saref4bdlg:isContainedIn" : "Room_1",
 "saref4bdlg:isSpaceOf" : "Building_1",
 "securityDefinitions": {
 "basic_sc": {
 "scheme": "basic",
 "in": "header"

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

23

 }
 },
 "security": "basic_sc",
 "properties": {
 "status": {
 "@type" : "saref4bdlg:colorTemperature",
 "type": "string",
 "readOnly": false,
 "writeOnly": false,
 "observable": false,
 "forms": [{
 "op": [
 "readproperty",
 "writeproperty"
],
 "href": "https://mylamp.example.com/status",
 "contentType": "application/json"
 }]
 }
 },
 "actions": {
 "toggle": {
 "@type" : "saref:Switch",
 "safe": false,
 "idempotent": false,
 "forms": [{
 "op": "invokeaction",
 "href": "https://mylamp.example.com/toggle",
 "contentType": "application/json"
 }]
 }
 },
 "events": {
 "overheating": {
 "@type" : "saref4bdlg:Alarm",
 "data": {
 "type": "string",
 "readOnly": false,
 "writeOnly": false
 },
 "forms": [{
 "op": "subscribeevent",
 "href": "https://mylamp.example.com/oh",
 "contentType": "application/json",
 "subprotocol": "longpoll"
 }]
 }
 }
}

A SPARQL query template can be extracted from the above queries to discover WoT TDs
from a given Recipe. The template can be instantiated based on the capabilities
described in a Recipe. Such a sample template is presented in the below snippet.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX td: <https://www.w3.org/2022/wot/td/v1.1/>

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

24

PREFIX saref4bdlg: <https://saref.etsi.org/saref4bldg/>
PREFIX saref: <https://saref.etsi.org/saref/>

SELECT ?title ?id ?at ?iat ?op ?href
{
 #Get the title and id of a thing with capability_type
 ?s rdf:type td:Thing .
 ?s rdf:type ?thingType .
 ?s td:title ?title .
 ?s td:id ?id .

 #Get interaction affordances, their data types, their allowed operations and hrefs
 ?s ?interaction ?interAff .
 ?interAff rdf:type ?at .
 ?o1 rdf:type ?iat .
 ?o1 td:forms ?b .
 ?b td:op ?op .
 ?b td:href ?href .

 FILTER (?at IN (td:PropertyAffordance, td:ActionAffordance, td:EventAffordance))
 FILTER (?thingType = <Capability_Type>) .
 FILTER (?iat IN (<Interaction_1_Semantic_Type>, ..., <Interaction_n_Semantic_Type>)) .

OPTIONAL {?s saref4bdlg:isContainedIn <Room_no> . }
OPTIONAL {?s saref4bdlg:isSpaceOf <Building_no> . }

}

The query template can be part of the Recipe matchmaker in Mendix (A3.9), which can
instantiate the queries based on a given Recipe.

Alternatively, the requirements for capabilities are also specified in textual format as
NLQ in the Recipe. This NLQ can be given to an LLM which can generate the SPARQL
query, execute it on a given knowledge graph and discover the matching things that can
run the Recipe application.
Currently, in SmartEdge, the discovery with LLM approach is being tested for OPC UA
standard to discover machines described with OPC UA information models. Section 19
presents a sample OPC UA based Recipe with NLQs. The LLM integrated in Mendix uses
the NLQs and discovers the matching nodes by generating SPARQL queries.

2.2.2.4 Current status and next steps

Based on these two example Recipes, here we demonstrated that the Recipe model is
flexible and domain-independent. It can define diverse kinds of applications in diverse
domains. Therefore, it is suitable for the semantic representation of applications in
SmartEdge. SmartEdge itself is a proof of concept as its use cases come from diverse
domains.

As the next steps we will define a capability model based on W3C WoT TD model and
implement it. Moreover, the Recipe model should be aligned with the Mendix flow
model (i.e., the Recipe created in Mendix as Mendix flow can be exported in JSON
format). The terminology in the Recipe model should be mapped with the Mendix flow
terminology and the context should be generated from the aligned Recipe model. This

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

25

context can be added to the Recipe Mendix flow, which will transform the Mendix flow
into RDF format. Finally, Recipes based on the Recipe model should be developed for
each use case. At present Recipe development has started for UC1 and UC4, the
examples are provided in this deliverable.

2.2.3 First Implementation of Middleware with Standardized Semantic Interfaces (A3.2)

We have been working on testing Zenoh as a technology for a middleware solution that
can be used within SmartEdge. We have successfully completed initial testing with
Zenoh as a message-oriented middleware. The tests showcased seamless interaction
using the DDS and MQTT protocols, demonstrating Zenoh's capability to bridge different
communication standards effectively.
Another implementation effort was dedicated to integrating OPC UA client functionality
in a virtual environment, e.g., into the Unity platform. Our new implementation enables
Unity to connect with an OPC UA server using the OPC UA .NET Standard Stack. This
integration includes the ability to read data from nodes, write to nodes, subscribe to
variables' updates. This allows for the use of the OPC UA standard within virtual
environments. An example, where the OPC UA connector for Unity is used is depicted in
Section 2.2.2.1.
Also, a proof-of-concept was developed to integrate MQTT Binding for Thing
Descriptions into a virtual scene as a Unity plugin, using a remote rendering artefact.
This demonstrates the potential of using MQTT-based communication for dynamic
interaction with virtual objects in real-time. An example, where the MQTT connector for
Unity is used is depicted in Section 2.2.2.2.
The upcoming tasks focus on further integrating these advancements within the scope
of Mendix and Middleware interactions. The next objective is to further test Mendix
microflows that can interact with Zenoh. Further efforts will be directed towards
integrating virtual scenes with TDDs, including implementing Life Cycle Management for
virtual Things. This will enable the use of these virtual objects in Recipes. These steps
are crucial for building a robust framework that can handle complex interactions
between virtual scenes and real-world systems, paving the way for more dynamic and
scalable applications. Additionally, the OPC UA connector for Unity will undergo further
tests and, possibly, extensions.
In the following two sub-sections we provide example applications that use MQTT and
OPC UA connectors for Unity, respectively.

2.2.3.1 Example application using MQTT based virtual environment integration

This subsection shows the first implementation of the MQTT based virtual environment
integration using W3C Thing Description with MQTT protocol binding. The JSON-LD
example below shows a Thing Description representation of a virtual car from Use Case
1. In this example, the two properties, acceleration and steering, are the most important
elements in the Thing Description. They allow an external application, such as ADAC, to
control the virtual car in the virtual environment, enabling the following:

• Simulation of complex traffic scenarios in a controlled, repeatable way.

• Time and cost savings, along with increased safety in testing.

• Large-scale testing that would be impractical or unsafe in the real world.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

26

{
 "@context": "https://www.w3.org/2022/wot/td/v1.1",
 "title": "MyVirtualCar",
 "id": "urn:uuid:9489991a-7622-45b6-8437-f858b59835d4",
 "securityDefinitions": {
 "nosec_sc": {
 "scheme": "nosec"
 }
 },
 "security": [
 "nosec_sc"
],
 "properties": {
 "acceleration": {
 "data": {
 "type": "number",
 "minimum": -1.0,
 "maximum": 1.0
 },
 "forms": [
 {
 "href": "mqtt://192.168.1.187:1883",
 "contentType": "text/plain",
 "op": [
 "readproperty",
 "writeproperty"
],
 "mqv:topic": "scene1/things/car1/properties/acceleration"
 }
]
 },
 "steering": {
 "data": {
 "type": "number",
 "minimum": -1.0,
 "maximum": 1.0
 },
 "forms": [
 {
 "href": "mqtt://192.168.1.187:1883",
 "contentType": "text/plain",
 "op": [
 "readproperty",
 "writeproperty"
],
 "mqv:topic": "scene1/things/car1/properties/steering"
 }
]
 }
 }

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

27

}

Each property in the Thing Description above includes two sections: “data” and “forms”.
The “data” section defines the structure and restrictions applied to a property, while the
“forms” section defines the binding to the underlying protocol. In the Thing Description
example above, the property “steering” accepts only numbers between -1.0 and 1.0,
indicating the direction of steering (negative values correspond to left turns, positive
values to right turns, and zero to move straight). It also binds the “steering” property to
the MQTT protocol via the endpoint provided in “href” and the MQTT topic defined in
“mqv:topic” In this example, any external application can read and change the
“steering” property, which maps to MQTT publish or subscribe operations for the topic
specified in “mqv:topic”.

The virtual car Thing Description can be used in a virtual scene whereas a virtual scene
is a digital replica of a physical environment, such as a factory or traffic situation. In these
environments, physical entities like robots, cars, and many others are represented in the
virtual scene by their digital entities/assets, or digital twins. Since the SmartEdge
ecosystem is represented by a set of interworking artefacts, it is a key requirement to
make the digital assets in virtual scenes accessible to other SmartEdge components in
the same way as physical assets. W3C Thing Description is a suitable method to enable
this functionality. The Rendering Engine exposes all virtual assets in a virtual scene using
Thing Description, making them available in a Thing Description repository, where Thing
Descriptions of physical assets are also registered. In this way, a SmartEdge application
that uses the Thing Descriptions from the repository will not need to distinguish
between physical and virtual assets. Figure 2-11 shows an example of a virtual scene for
a traffic scenario with virtual cars that mimic the behaviour of physical cars in a real
traffic scenario.

Figure 2-11 Virtual Scene with Virtual Car

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

28

2.2.3.2 Example application using OPC UA based virtual environment integration

In Use Case 4, Unity9 is used for the purpose of virtual commissioning in an Industrial
Metaverse environment. The Mendix low-code runtime communicates with Unity over
OPC UA protocol. Industrial assets, like the assembly module seen in Figure 2-12, have
a digital twin in Unity. The real asset is defined using OPC UA's standardized semantics
in the form of skills, which are then mapped to its virtual representation. Leveraging
these OPC UA skills, the low-code runtime, enhanced with large language models, can
swiftly and easily generate Recipes. These Recipes are executed within the virtual
environment for virtual commissioning. To ensure the generated Recipe matches the
low-code engineer’s vision, the virtual environment employs physics simulations to
preview the Recipe's execution. This visual confirmation allows the engineer to verify
the accuracy and behaviour of the production line.

Figure 2-12: Production Module with its Virtual Counterpart and OPC UA Information Model from UC4

2.2.4 First Implementation of Knowledge Graph Repository (A3.3)

The Knowledge Graph Repository is the basis for semantic queries and the discovery
service in the low-code toolchain. We use the Domus TDD API from Eclipse Thingweb as
our Knowledge Graph Repository. Domus implements a Python and SPARQL-based
Thing Description Directory (TDD). It complies with the W3C specifications and
implements the Web of Things Discovery Exploration Mechanisms. The API relies on a
SPARQL endpoint as a database connection. The supported endpoints are Apache Jena's
Fuseki, Ontotext's GraphDB, OpenLink Software's Virtuoso, and AWS Neptune. Fuseki is
set as the default endpoint. If one wants to change the endpoint, they can do so using
two methods: (i) editing the config.toml file with the corresponding
SPARQLENDPOINT_URL value, or (ii) by using environment variables like so: export
TDD__SPARQLENDPOINT_URL="http://my-new-sparql.endpoint/address".
The Figure 2-13 shows how the JSON and RDF files are dealt with in the TDD API.

9 https://unity.com/

https://github.com/eclipse-thingweb/domus-tdd-api
https://w3c.github.io/wot-discovery/#exploration-mech
https://unity.com/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

29

Figure 2-13: Thing Description Upload and Retrieval via TDD API

The Knowledge Graph Repository is released as part of the first SmartEdge release. It is
shipped with the docker-compose file and is available on the Docker registry on the
project integration environment. To enable storing of OPC UA NodeSets in RDF format,
a DataOps pipeline was designed and implemented. The first version of a SPARQL query
interface for OPC UA NodeSets is available for the first release and fully documented in
Section 3.3.2 (DataOps Pipeline for OPC-UA support).

2.2.5 First Implementation of Mendix Toolchain (A3.4)

Recent progress has been made in extending Mendix capabilities, particularly in
supporting various communication protocols and integrating new connectors for
advanced use cases. The first version of the WoT client connector has been developed.
It allows to read/write a property, subscribe to an event, and/or invoke an action via
WoT REST API. The developed functional blocks are shown in Figure 2-14.

Figure 2-14: Mendix toolbox for WoT client

Besides that, the latest version of Mendix has been successfully extended to include
support for BLE communication, specifically tailored for the use case 5b. This connector
allows to directly get the data from BLE-devices in the Recipe’s instances, running in
Mendix runtime. Furthermore, the OPC UA connector for Mendix has been extended to
support the OPC UA method calls. The current version supports only the parameter-less
methods and must be extended in the future release to be capable of calling the
methods with parameters. With further successful tests of BLE, OPC UA, and REST
connectors, Mendix supports various communication protocols and allows to use
diverse devices to run the Recipes. Also, the Mendix runtime capable of executing
Recipes has been dockerized and provided as an artefact.
The following steps towards the second release of SmartEdge tools, include extending
Mendix to support the SmartEdge Recipe model. This will enable the development of

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

30

low-code solutions that can leverage predefined Recipes, simplifying the creation and
reusability of complex IoT applications.

2.2.6 First Implementation of Semantic Media Service (A3.11)

The artefact is scheduled for the second release of SmartEdge and has been delayed due
to resources and other priority work. Initially, the plan was to use projective geometry
to calculate the location and pose of the objects in the environment, but this did not
prove to be possible, so another technique had to be developed by matching partial
images to the object. We have started work on building an image dataset of
manufacturing equipment. The dataset will be used for a number of purposes, including
training object detectors to classify objects in the environment correctly. The artefact
also extensively uses the dataset to model the objects in both CAD and URDF. The
models form a digital twin of the object that allows the pose of the object to be decerned
from only a partial image.

As next steps, we will complete the modelling of the objects in the environment and
start training the object classifiers. Furthermore, we aim to investigate techniques for
calculating the location and pose of an object for a partial image. This work is still
ongoing but iNeRF looks promising.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

31

3 DATAOPS TOOL FOR SEMANTIC MANAGEMENT OF THINGS AND

EMBEDDED AI APPS

The DataOps toolbox is designed and implemented in SmartEdge to support the
continuous integration of Things and Apps, facilitating their deployment from the Cloud
to the Edge. This tool aims to provide a solution for enabling data exchanges,
harmonisation, and integration in implementing edge intelligence among nodes within
a swarm. A special focus is given to the performance and scalability requirements and
the need to support different deployment environments.

Considering the SmartEdge requirements elicited in D2.1 and refined in D2.2, the
DataOps toolbox has been designed in D3.1 to address two main challenges:

▪ Interoperability of static node information: the description of the node
information and its capabilities should be made interoperable and
exchanged/retrieved according to common semantics;

▪ Interoperability at runtime within a swarm: a node's runtime information should
be made interoperable, or the runtime data exchanges between nodes in the
swarm should be mediated to guarantee their interoperability.

To achieve this, the following list of functionalities should be supported by the DataOps
toolbox:

▪ Implementation of mediated data exchanges between an input and target
node/component requiring different interaction mechanisms (e.g., from MQTT
queue to REST API);

▪ Conversion of heterogeneous (semi-)structured data from an input
format/schema to a target format/schema (e.g., JSON using custom schema to
RDF using target ontology);

▪ Data integration/fusion by leveraging a common semantic representation, i.e.,
data can be converted to an RDF graph using a shared reference ontology.

Since implementing such functionalities depends on each scenario's specific
requirements, a single solution cannot exist. For this reason, the DataOps toolbox is
designed as:

▪ DataOps Pipeline Components (A3.5): a set of composable modules that can be
appropriately configured and combined within a pipeline to address
heterogeneous integration requirements within a swarm.

▪ DataOps Deployment Templates (A3.6): reusable templates to provide flexibility
in deploying DataOps pipelines both in the Cloud and on the Edge.

▪ Low-code DataOps Configuration (A3.7): low-code approaches to support
developers in the configuration of the pipelines.

As an orthogonal non-functional requirement, we focus on the performance and
scalability of the DataOps tool that is evaluated considering the KPI 2.2 and 2.3.

The remainder of this chapter presents the final design and the first implementation of
the artefacts A3.5, A3.6 and A3.7.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

32

3.1 FINAL DESIGN

This section presents the final design of the DataOps toolbox and highlights the main
innovations for each artefact. The diagram in Figure 3-1 represents the three artefacts
implemented for the DataOps toolbox and their relation.

We describe the diagram by considering an example scenario related to implementing
a mediated data exchange between two nodes within a swarm. The implementation of
a proper DataOps pipeline for each data exchange requires the following information:

▪ Input/output data connector required
▪ Input and target output data format and schema
▪ Associated performance/scalability constraints and requirements

Based on these requirements, a set of components should be identified and selected
considering the ones made available by A3.5. Such components can be composed and
configured to define a DataOps pipeline. The low-code definition of the pipelines is
enabled by the adoption of declarative approaches for defining the interactions among
the components and the schema and data transformations to be performed.
Moreover, A3.7 enables the possibility of relying on a GUI to configure the pipeline via
a drag-and-drop editor that also guides the user in the selection of the parameters for
each selected component.

Figure 3-1: DataOps Toolbox related artefacts and their relation

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

33

The DataOps Tool should support diverse needs, particularly considering the different
strategies for deploying a solution for mediating data formats and semantics. The
diagram in Figure 3-2 shows different options that can be adopted for the integrated
execution of a DataOps pipeline within the swarm:

▪ Within a dedicated smart-node10 (mediation node)
▪ Embedded in the swarm orchestrator (mediation service)
▪ Embedded in the middleware/network layer
▪ Embedded in the source/target smart-node

Figure 3-2: Deployment options for the DataOps Toolbox

Each option is associated with different trade-offs and depends on the specificities of
the considered scenario. In the first two cases, the orchestrator could possibly enable
the deployment of a mediation node or the execution of a mediation service by
considering the requirements of the Recipe to be executed and the nodes composing
the swarm. The last two cases assume a predefined configuration for either the
middleware or specific nodes to enable their cooperation within a Recipe executed by
the orchestrator.
A3.6 provides a set of templates to deploy a pipeline in different deployment
environments. The right template can be selected considering resource availability and
deployment strategies and used to execute the specified pipeline. Generally, the same
pipeline can be deployed in different deployment environments without requiring
specific modifications.

D3.1 reports the analysis of the state of the art and the main design decisions made for
each DataOps artefact. In this section, we briefly summarise the relevant content from
D3.1 to ensure that the document is self-contained and describe the final design of A3.5,
A3.6 and A3.7.

10 As in D3.1, we define a smart-node as a node that can be modified to execute SmartEdge components.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

34

3.1.1 Final Design of the DataOps Pipeline Components (A3.5)

The DataOps component is designed to provide the necessary building blocks to
configure heterogeneous DataOps pipelines for data operations in SmartEdge.

From the state-of-the-art analysis reported in D3.1, the declarative semantic conversion
process represented in Figure 3-3 is selected as the approach to enable data
interoperability and data integration. Declarative mapping rules are leveraged to
configure to/from transformations from a reference conceptual model relying on
Semantic Web technologies for syntactic and semantic interoperability. This any-to-one
approach reduces the number of mappings to be defined in case of point-to-point
integrations and improves scalability when enabling interoperability between numerous
data models/standards [Vetere05]. The mapping rules are decoupled from the
component responsible for their execution to improve their maintainability and
reusability.

Figure 3-3: Declarative semantic conversion process for interoperability

To implement such an approach, we designed the DataOps pipelines as represented in
Figure 3-4. The main types of building blocks are the Node Data Connector, which are
blocks responsible for enabling data exchanges with different types of
interfaces/protocols, and the Mapping Processor, which are blocks capable of executing
declarative mapping rules for data and schema transformations. Additional blocks may
be integrated within a pipeline to perform additional manipulations or to implement
Enterprise Integration Patterns [Hohpe04].

Figure 3-4: DataOps Pipeline

We selected the Apache Camel 11 framework as a solution enabling enterprise
integrations through the configuration of building blocks within an executable pipeline.

11 https://camel.apache.org/

https://camel.apache.org/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

35

Moreover, Apache Camel offers many production-ready components that can be easily
integrated within a pipeline as Node Data Connector for common protocols and
interfaces. Finally, Camel can be easily extended to define custom-defined components
to be integrated within a pipeline.

As a reusable component for Apache Camel, the Chimera framework 12 introduces
operations for constructing, manipulating, and exploiting knowledge graphs within a
pipeline. It provides support for operations on an RDF graph (either local or remote),
execution of declarative mapping rules adopting the RDF Mapping Language (RML)13
specification and the execution of template-based mapping rules leveraging the Apache
Velocity14 Template Engine. The Apache Camel components and the one introduced by
the Chimera framework are defined as A3.5, i.e., the DataOps components for
implementing the required pipelines in SmartEdge.

The design and implementation activities for the first release focused on:

▪ the redesign of the template-based mapping rule component (Mapping
Template) to enable generic knowledge conversion via declarative mapping
rules while improving performance and scalability;

▪ a complete refactor of the Chimera framework to increase the solution's overall
TRL, improve its reusability and facilitate the configurability and composability
of pipelines.

For the second release, we will focus on improving the maturity of the DataOps
components with respect to the new functionalities (e.g., improve the integration of the
mapping-template within the respective Camel component), and we will address
additional requirements emerging from SmartEdge use cases in the piloting activities
within WP6 (e.g., in terms of building blocks required within a pipeline). Moreover,
considering the evaluation performed for the first release (discussed in Section 3.2.1.3),
we will investigate approaches to monitor DataOps pipelines and further improve
performance and scalability of the pipeline executions.

3.1.1.1 Mapping Template Component

Starting from analysing mapping languages and mapping processors for declarative RDF
Knowledge Graph construction, reported in D3.1, we designed a workflow for generic
knowledge conversion [Scrocca2024]. This workflow aims to build on the work done for
the declarative materialisation of RDF triples for the definition and execution of
declarative mapping rules towards a generic output. Indeed, nodes involved within a
swarm are usually not able to directly process an interoperable representation of data
in RDF .

The final version of the workflow, represented in Figure 3-5, depicts a general mapping
scenario in which data from a source, formatted according to a specified input format

12 https://github.com/cefriel/chimera
13 https://rml.io/
14 https://velocity.apache.org/

https://github.com/cefriel/chimera
https://rml.io/
https://velocity.apache.org/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

36

and model, needs to be converted into a target format and model before being stored
in a designated data sink. This mapping scenario may include the integration of extra
data sources to produce the output and the application of data and schema
transformations throughout the process. The workflow outlines the foundational
elements for a generic declarative mapping language along with the relevant
components necessary for a mapping process executing the mappings.
The parsing and extraction process from heterogeneous data sources is generalised
considering the concept of data frame, i.e. a two-dimensional data structure made of
rows and columns. The overall workflow can be summarized as follows:

▪ the input data sources are accessed according to a specific configuration (e.g.,
protocol/interaction mechanism);

▪ the retrieved data are extracted and used to initialize a set of data frame
structures;

▪ data transformations or combination operations (e.g., join) can be applied to
the data frame structures;

▪ a set of declarative mapping rules is executed to map the content of the data
frame structures to the target schema;

▪ the output data are written to data sinks according to specific configurations.

Figure 3-5: Final workflow for generic knowledge conversion enabled by a DataOps pipeline

Based on this workflow, we redesigned and refactored the mapping-template15 library
that supports data and schema transformations by leveraging the Apache Velocity
template engine. In particular, we defined a Mapping Template Language16 (MTL) on top
of the Velocity Template Language (VTL) to define mapping rules for generic knowledge
conversion according to the defined workflow building blocks. The overall goal is to
leverage the competitive performances provided by the adoption of a template engine

15 https://github.com/cefriel/mapping-template
16 https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

37

while providing users with a declarative mechanism to specify mapping rules. The
details about the developments performed are reported in Section 3.2.1.

The definition of mapping rules as templates trades some aspects of a fully declarative
approach. However, it covers three important requirements emerging in SmartEdge:

▪ provide flexibility in the generated output since many nodes can not process
RDF;

▪ handle complex transformation scenarios (e.g., requiring functions with side
effects);

▪ facilitate the definition of mapping rules for users unfamiliar with RDF.

Nevertheless, to support users willing to adopt a fully declarative approach and not
interested in the mentioned features, we implemented RML compliance for this
component, as discussed in Section 3.2.1. This implementation supports the claim that
the proposed MTL could generalize the declarative mapping rule specification for KG
construction.

As an additional advantage of the new implementation, the decomposition in blocks of
mapping rule definitions and executions enables the explicit specification of
optimization strategies to improve the performance and scalability of mapping rules
considering a target scenario. For example:

▪ the number of accesses to the input data sources and the information extracted
can be optimised by defining the minimum number of data frame required for
the mapping rules to be applied;

▪ the join execution can be optimized by applying appropriate combination rules
directly to the data frames.

3.1.1.2 Chimera

To facilitate integration within the Apache Camel ecosystem, Chimera was redesigned
to define distinct Camel components, each one compliant with Apache Camel’s
guidelines17. Camel components are collections of related functionalities focused on
specific tasks. For instance, the FileComponent provides capabilities for file operations
like deleting, creating, and copying files. Components expose these functionalities
through configurable options known as endpoint parameters. Each Endpoint is identified
by a URI, which consists of the component’s unique identifier followed by its
configuration parameters. For example, the URI file://inputdir/?delete=true specifies
the use of the File component, where inputdir is the target directory, and the delete=true
parameter instructs Camel to delete files in this directory after processing.

Components are then linked sequentially within Routes, where each component is
executed in the specified order. An example Camel route is shown in Figure 3-6, where
data is read from a directory using the FTP component and is then sent to the example
queue using the ActiveMQ component.

17 https://camel.apache.org/manual/component.html

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

38

Figure 3-6: Example of a Camel route written using the Java domain specific language

We refactored the Chimera codebase defining three main Camel components:

▪ The Chimera graph component is designed to perform operations on RDF graphs,
including reading and serializing RDF data in multiple formats (such as Turtle,
RDF/XML, and N-Triples). In Chimera, RDF graphs act as abstractions for diverse
RDF data sources, each optimized for specific use cases:

o MemoryRDFGraph, A transient RDF graph stored only in memory.
o NativeRDFGraph, An RDF graph persisted on disk, backed by a specific

filesystem.
o HTTPRDFGraph, Enables Chimera to connect to an RDF graph hosted on

a remote triplestore.
o InferenceRDFGraph, An RDF graph that incorporates inference

capabilities for reasoning tasks.
o SPARQLEndpointGraph, An RDF graph accessible through a SPARQL

endpoint.

Over these RDF graphs, the Chimera graph component defines a series of
operations.

o GraphGet, initializes one of the RDF graph types to be used in a Camel
route

o GraphAdd, adds RDF triples to an RDF graph
o GraphInference, performs inference to generate new data based on

existing graph data
o GraphSparqlSelect, runs a SPARQL select query on an RDF graph
o GraphConstruct, generates triples to be added to an RDF graph via a

SPARQL construct query
o GraphSparqlAsk, runs a SPARQL ask query on an RDF graph
o GraphShacl, performes validation of an RDF graph via SHACL18 shapes
o GraphDetach, severs the connection between the RDF graph and an RDF

data source or clears part of, or all triples from a graph
o GraphDump, writes and RDF graph to a file in a specific RDF format

▪ The Chimera mapping-template component is a Camel component wrapper

around the mapping-template library19 discussed in Section 3.1.1.1, making it
accessible for data conversion and mapping operations within Camel. In a Camel
route, it is used to convert an incoming input according to a set of declarative
mapping rules, defined using the MTL, that should be provided as part of the
component configuration.

18 https://www.w3.org/TR/shacl/
19 https://github.com/cefriel/mapping-template

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

39

▪ The Chimera RML component serves a similar purpose as the mapping-template
component but allows the usage of mappings written in RML by wrapping a
forked version of the rmlmapper20 library.

As summarized in Figure 3-7, a DataOps pipeline can be configured by integrating and
configuring within a Camel route: (i) existing Camel components, (ii) Chimera
components, (iii) custom components defined for specific integration scenarios.
Additional details on the design of the A3.5 are reported in D3.1. We discuss the main
modifications introduced in the implementation work for A3.5 within Section 3.2.1.2,
and we discuss examples of pipelines developed for SmartEdge in Section 3.3.

Figure 3-7: Overview of a DataOps pipeline integrating different components

3.1.2 Final Design of the DataOps Deployment Templates (A3.6)

Given a DataOps pipeline, a deployment strategy should be selected considering the
constraints for its deployment. Different options may be evaluated, depending on the
nodes involved in the mediated data exchange, such as the machine hosting a certain
node or the possibility of modifying the node's code to be executed.

For this reason, we investigated the alternative options for executing Apache Camel
integrations to enable flexibility in deploying DataOps pipelines both on Edge devices
and in the Cloud. The implementation of A3.6 focused on the definition of reusable
templates to facilitate the deployment of pipelines in different environments.

We identified the following deployment alternatives for a DataOps pipeline:

1. Library: A DataOps pipeline can be integrated within a Java Project by importing
Apache Camel and Chimera as dependencies and thus integrating the execution
of a DataOps pipeline within the already existing source code of a swarm node.
In this case, the deployment depends on the parent project integrating the
DataOps pipeline.

2. JAR Files: JAR files are self-contained executables (Java Archive) that encapsulate
all the necessary components for running a DataOps pipeline. This makes them

20 https://github.com/cefriel/rmlmapper-cefriel

https://github.com/cefriel/rmlmapper-cefriel

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

40

highly portable and suitable for a wide range of devices that can run a Java
runtime. JAR files can be deployed on various platforms, including desktops,
servers, and cloud environments. They offer a high degree of flexibility and can
be integrated with different systems and frameworks. Different runtime can be
selected to build and package JAR files for executions:
▪ Camel Core: basic runtime for Camel applications. Can be used in applications

where lightweight pipelines should be defined without the need for a larger
framework supporting many dependencies.

▪ Spring for Camel: Camel's Spring integration allows Camel routes to be
configured within a Spring-based application, thus leveraging Spring’s
dependency injection, lifecycle management, and configuration. Moreover,
Camel offers Spring Boot compliant components to facilitate the automatic
integration of pipelines within Spring applications.

▪ Quarkus: a Java framework designed to start up quickly applications by
implementing specific optimisations and configurations at build time.
Quarkus is optimized for low memory usage, making it suitable for resource-
constrained environments, serverless environments and microservices
architectures. Java libraries should be adapted as Quarkus extensions21 to
enable their usage within Quarkus projects.

JAR Files for a DataOps pipeline can be deployed within a node equipped with a
JVM or as a dedicated node implementing a mediation service.

3. Containerization: To further enhance portability and scalability, JAR files can be

packaged as OCI (Open Container Initiative) containers using different Java
Virtual Machines (JVMs), such as OpenJDK or Oracle JDK. This allows for efficient
deployment and management in containerized environments like Docker and
Kubernetes. A DataOps pipeline may be packaged as a standalone container or
integrated within the container executing code for a certain node.

4. Native Executable (GraalVM): GraalVM is a high-performance Java runtime that

offers ahead-of-time (AOT) compilation. This enables the compilation of DataOps
pipelines as native binary executables before deployment, eliminating the need
for a JVM at runtime. Native executables generated by GraalVM are typically
smaller and have faster startup times than JAR files. This makes them ideal for
resource-constrained devices and applications that require quick response
times. Native executables can have a smaller memory footprint than JAR files,
especially when used on embedded or IoT devices. This can improve
performance and reduce resource consumption. GraalVM can generate native
binaries for specific platforms, such as Linux, Windows, and macOS. This ensures
optimal performance and compatibility for the target environment. Native
executables can be generated for the different frameworks discussed above:
Camel Core, Spring for Camel, Quarkus. Native executables for a DataOps
pipeline within a node or as a dedicated node implementing a mediation service.

21 https://quarkus.io/guides/writing-extensions

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

41

5. Kubernetes: If a Kubernetes environment is available either on a single device or
as a deployment environment for multiple nodes composing the swarm,
DataOps pipeline(s) can be deployed using different approaches:

• Sidecar container22: a Docker container running a DataOps pipeline can be
executed within a Pod deployed for a node as a sidecar container;

• Service: A Docker container running a DataOps pipeline can be executed as a
dedicated Kubernetes Pod and exposed as Kubernetes services. This enables
scaling the number of replicas and the automatic load balancing of requests.

• Apache Camel K: a subproject of Apache Camel explicitly designed for
running pipelines in Kubernetes-based environments. It can be used to
simplify the deployment of DataOps pipelines for use cases involving cloud-
native and serverless architectures. One of the core innovations introduced
by Camel K is the concept of Kamelets (Kamel route snippets), which are
reusable integration templates that provide an abstraction to encapsulate
pipelines for specific integration tasks (like accessing data from a certain
node in a specific format).

• K-Native: a Kubernetes-based platform to deploy, manage, and scale
applications. It can be employed to manage a Camel K deployment of
DataOps pipelines in a serverless manner. In particular, K-Native enable
automatic scaling of the pipelines23 , allocating more computing resources to
pipelines with increasing workloads and allowing scale-to-zero to pipelines
not receiving requests.

Table 3-1 updates the analysis reported in D3.1 on the pros and cons of the different
deployment alternatives identified.

Table 3-1: Analysis of PROs and CONs for different deployment alternatives

Deployment Pros Cons

Library

• Integrated execution (e.g.,
exchange over the network is
not required) can lead to better
performance.

• Requires modification to the
source code. It is only possible if
the codebase is in Java.

JAR file

• Easy to build.

• Easy to deploy to a device,
everything necessary is
contained in the JAR.

• [Quarkus] Really low memory
footprint and fast start-up.

• Requires the device to run Java.

• [Quarkus] Not all the Java
libraries support Quarkus.

Containerizatio
n

• JVM and needed dependencies
are packaged as a single
artefact.

• Requires a container runtime to
execute it.

• Image selected for the container
may introduce overhead in
resource usage w.r.t. direct
execution.

22 https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/
23 https://knative.dev/docs/serving/autoscaling/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

42

Native
Executable

• Does not require the device to
run Java.

• Faster start-up and execution
times than a JAR file.

• Creating a native binary
demands more CPU power and
RAM compared to building a JAR
file.

Kubernetes

• Replication and auto-scaling are
supported by Services in
Kubernetes.

• [Kamelets] Allow an even easier
re-use of routes inside of a
larger integration.

• [K-Native] Serverless approach
enables scale-to-zero to save
resources, and scalability via
replication for high traffic loads.

• It only makes sense in the
context of a Kubernetes
deployment.

• [Kamelets] Limitations on the
structure of kamelets for reuse.

• [K-Native] Management of
dependencies should be
handled to enable execution of
pipelines including custom
components.

Figure 3-8 provides an overview of the deployment templates (A3.6) identified for a
DataOps pipeline.

Figure 3-8: DataOps Deployment Templates

The majority of the deployment templates are made available for the first release as
described in Section 3.2.2. For the second release, we will further extend the list of

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

43

available templates by focusing on Camel-K 24 and Knative 25 for Cloud deployment
environments and on Quarkus for Edge environments.

3.1.3 Final Design of Low-code DataOps Configuration (A3.7)

The objective of artefact A3.7 is to support easy and low-code implementation of
DataOps pipelines for enabling mediated data exchanges between nodes in the swarm.
The low-code approach adopted for the definition of DataOps pipelines simplifies
application development by emphasizing configuration over manual coding. The overall
objective is to enable a declarative configuration of components so that users can
reduce the need to implement custom solutions.

For the DataOps tool, the choice of adopting the Apache Camel framework enables the
definition of data integration pipelines using the abstraction of Routes as a composition
of building blocks. This abstraction empowers a no-code approach to data integration,
as it exposes all available functionalities of Camel components through well-
documented URI parameters, which users can configure when creating a route. This
approach also means that modifying the data integration pipeline doesn't necessitate
rebuilding the entire software artefact that executes Camel routes; it only requires
changes to the file where the route is declared. To enable this configuration over code
approach, routes can be defined using several domain-specific languages (DSL), with the
most prominent options being XML, Spring XML, and YAML.
A declarative approach also enables the definition of mapping rules, as discussed in
3.1.1, that can then be provided as input to the relevant components within a Route.

To streamline the definition of a Route, we investigated Apache Camel Karavan26 that
provides a graphical user interface as a plugin for Visual Studio Code to configure a Route
without writing code. This graphical approach significantly eases the process of route
definition, as it avoids syntax and logical errors that may happen when manually writing
a route in a text file. Karavan supports all the components officially included in the
Apache Camel Framework, that can be reused within a pipeline defined using the tool.
A pipeline configured in Karavan can be automatically exported as a Java project for
execution.

Additionally, Karavan supports predefined and custom Kamelets27, which are reusable
route templates designed to simplify route construction. Kamelets let users define
parameterized routes using the YAML DSL, streamlining the process by hiding
unnecessary details. A Kamelet can either be a Source, that produces data and can then
send it to another component that is passed in as a parameter or as a Sink, that receives
data from a component passed in as a parameter another fixed component defined in
the Kamelet. An example Source Kamelet can be seen in Figure 3-9. This example
Kamelet demonstrates how this approach can be used within DataOps pipelines to reuse
integrations to access or forward data to a certain node. The Kamelet shown in the
snippet, sends an HTTP request to check the status of a swarm node at regular intervals

24 https://camel.apache.org/camel-k/2.2.x/index.html
25 https://knative.dev/docs/
26 https://github.com/apache/camel-karavan
27 https://camel.apache.org/camel-k/2.5.x/kamelets/kamelets.html

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

44

and processes the response. The user reusing this Kamelet will only need to configure
the kamelet:sink to define the remaining part of the pipelines. If available, another
Kamelet may be reused also for the sink.

Figure 3-9: Example source Kamelet that is used to read the status of the swarm and then forward it to a target

node

To integrate this tool into the DataOps toolbox and enable the use of Chimera
components in a no-code manner, we worked on improving Chimera’s compatibility
with the Apache Camel framework. This has been done by introducing the concept of
ChimeraResources, a general approach to handling different resource types in the
various Camel DSLs and changes to the parameters defined by the various Chimera
components. The technical details of these changes are described in Section 3.2.1.2.2
and Section 3.2.3.
Some usability challenges remain due to the unofficial status of Chimera components.
Indeed, a default installation of the Karavan plugin lacks the necessary metadata for
enabling the definition and automatic export of a pipeline using DataOps components.
Section 3.2.3 discusses how we addressed these aspects for the first release. However,
this still requires manual steps from the user, which we seek to eliminate. We will
investigate how to improve these aspects in the second release by focusing on the
possibility of defining and reusing custom Kamelets in Karavan. Finally, we plan to

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

45

develop a set of Kamelets specific to the project’s needs and make them available
through the Karavan catalog, making their reuse easier.

We also performed an examination of Kaoto28, a tool comparable to Camel Karavan and
developed by RedHat, for potential adoption but we discarded it for the moment since
it cannot support custom Camel components as the ones defined for the DataOps
pipelines.

3.2 FIRST IMPLEMENTATION

This section discusses the artefacts implemented for the first release of the DataOps
Toolbox and how they support their final design. Open-source components adopted for
implementing the SmartEdge artefacts are referenced as Git submodules within the
public SmartEdge repository on Gitlab29.
Specific developments for the SmartEdge use cases (e.g., the pipelines discussed in
Section 3.3) are kept within the SmartEdge private repository30.

3.2.1 First Implementation of the DataOps Pipeline Components (A3.5)

The first implementation of the DataOps Pipeline Components is discussed considering
developments for the mapping-template component and the overall Chimera
framework. Finally, we report an initial performance and scalability evaluation of the
mapping-template against other RML-based processors.

3.2.1.1 Mapping Template Component

Considering the mapping processors made available as DataOps components for A3.5,
we focused on improvements for the mapping-template library and the corresponding
component in Chimera (Mapping Template Component). We developed this approach
as an alternative to the well-known RML mapping processors, taking into account
requirements from SmartEdge: (i) address specific mapping rules that are difficult to
express with the fully-declarative syntax and targeting a generic output, (ii) facilitate the
definition of mapping rules by users that are not familiar with RDF, (iii) address
performance and scalability transformations for runtime message conversion and
considering resource-constrained devices.

As a result of the workflow for a generic mapping process discussed in the design of
A3.5, we reviewed the definition of mapping rules in the mapping-template31 library and
we defined a Mapping Template Language 32 (MTL) to provide specification of the
intended usage. We also developed examples to compare MTL with RML-based mapping
languages and help users adopt the tool33. These examples were also used to perform a

28 https://kaoto.io/
29 https://gitlab.com/smartedge-project-eu/smartedge-public/-/tree/main/dataops
30 https://gitlab.com/smartedge-project-eu/SMARTEDGE
31 https://github.com/cefriel/mapping-template
32 https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)
33 https://github.com/cefriel/mapping-template/tree/main/examples

https://gitlab.com/smartedge-project-eu/smartedge-public/-/tree/main/dataops
https://gitlab.com/smartedge-project-eu/SMARTEDGE
https://github.com/cefriel/mapping-template
https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)
https://github.com/cefriel/mapping-template/tree/main/examples

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

46

qualitative evaluation of MTL's expressiveness against the requirements for mapping
languages for knowledge graph construction [Scrocca24].

Finally, we implemented additional features to enable the tool's use in additional
scenarios and we added support for the direct execution of RML mappings via the
mapping-template.

3.2.1.1.1 Mapping Template Language (MTL)

MTL is the defined language to declaratively specify data and schema transformation for
a mediated data exchange within a DataOps pipeline.

The core components enabling the Mapping Template Language (MTL) are Readers and
Data Frames. Readers are format-specific objects used to load input data for mapping,
while Data Frames provide a flat, tabular view of that data extracted by format-specific
query languages known as reference formulations. Each type of data format has a
dedicated Reader (e.g., CSVReader for CSV files, JsonReader for JSON, etc.). Once input
data is loaded by a Reader, it is transformed into a Data Frame using a reference
formulation, which extracts data into a tabular structure. This implementation supports
the second step of the generic workflow for knowledge conversion, i.e., the Data Frame
Extraction. For example, hierarchical JSON data is converted into a Data Frame using
JsonPath expressions; similarly, XML uses XQuery, RDF uses SPARQL to achieve this
tabular format.

Once the data is available in a Data Frame, it can be manipulated (Data Frame
Manipulation in the workflow) by combining it with other data frames or applying data
transformations. For enabling this, we implemented in the mapping-template a set of
convenience functions accessible via the $functions variable in a MTL template. These
include various string operations, such as replacement and hashing, but also join
operations between Data Frames. To support a wide range of mapping applications, MTL
allows users to extend functionality by adding custom Java functions, which can be
loaded and used within mappings.

To enable the Mapping Execution step of the workflow, the MTL follows a template
approach by allowing the user to express the structure that the output data must follow
and how the data from Data Frame(s) should be bound to it. This is shown in the
mapping in Figure 3-10 which reads XML data and outputs the data in RDF Turtle format
shown in Figure 3-11.

The mapping in Figure 3-10 demonstrates the key features of the MTL language and how
it integrates the template language of the Apache Velocity library (VTL). The initial lines
define RDF prefixes for the output, which are written exactly as specified, since they are
neither directives nor variables. The #set directive assigns a value to the $query variable,
which contains an XQuery query. In the MTL language, directives are denoted by a
leading ‘#’ while variables are denoted by a leading ‘$’. Since the input data is in XML
format, XQuery serves as the reference formulation, and the $reader is an XMLReader.
Together, the Reader and query extract data to create a Data Frame, which is then used

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

47

to generate the RDF Turtle output. In the final part of the mapping, a loop iterates over
the Data Frame, highlighting MTL’s template-based approach. Fixed elements, such as
the rdf:type literal, are written directly to the output, while expressions like $stop.busId
are evaluated based on the current iteration.

Figure 3-10: MTL mapping to convert XML data to RDF Turtle

Figure 3-11: XML input data and corresponding RDF Turtle representation obtained by applying the mapping

template

The workflow's Data Source Reading and Data Sink Writing steps are only partially
supported through the MTL for execution via CLI. We chose to decouple these steps to
reduce the necessity of incorporating multiple external libraries into the mapping-
template library. This decision was made with the expectation that the tool could be
seamlessly integrated with existing Extract-Transform-Load (ETL) tools, offering various
production-ready data connectors right from the start. In this direction, the integration
with Chimera guarantees support for the declarative definition of DataOps pipelines
leveraging Camel components and MTL to implement the full workflow. Examples are
discussed in Section 3.2.3.

3.2.1.1.2 Additional features implemented

To support the new MTL specification, we modified the library accordingly. Currently,
Reader implementations are made available to extract data frames for heterogeneous
input data sources: CSV, JSON, XML, RDF, SQL databases (specifically PostgreSQL and
MySQL). Moreover, we defined additional functions exposed via MTL to combine and
manipulate data frames, e.g., join operations.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

48

As an additional feature to facilitate the implementation of complex integration
requirements within a DataOps pipeline, users can now refer to multiple input sources
via MTL that are then accessed by providing multiple Readers to the mapping-template
library. This feature eliminates the need to define individual mappings for each data
source. It is useful for complex mappings that depend on multiple, potentially dynamic,
data sources, e.g., data coming from different nodes within a swarm. While it was
previously possible, doing so required the user to know both the type and location of
each data source in advance when writing the mapping file, limiting flexibility at design
time. This constraint was manageable for static or batch processes, where input data
remains constant and is converted only once. However, it hampers template reusability,
as users must manually update templates to accommodate new or different data
sources. An example of this can be seen in the MTL mapping snippets in Figure 3-12. In
the top part of the figure, we can see that the user must specify both the type of data
that needs to be loaded, in this case, CSV, and the location of the data file. This means
that should the file location change, the mapping should also be changed, limiting
reusability as the mapping ideally should be concerned with just the data conversion
aspect. In the bottom part of the picture the new functionality is shown, where the
Readers used in the mapping are supplied externally and are not defined in the mapping
itself.

Figure 3-12: On top, an example of defining multiple readers statically within a mapping.

On the bottom, the new possibility of providing multiple readers dynamically from outside the mapping.

This new capability is designed to work in the context of a DataOps pipeline by
leveraging the Chimera Mapping Template component. In this context, conversions are
more dynamic, and often, externally supplied data inputs need to be adapted. By
contrast, the conversion remains a one-time batch process when using the mapping-
template component as a standalone application.

3.2.1.1.3 Support for RML mappings

Building on the work done on the generic workflow for knowledge conversion and on
the previously introduced enhancements, we implemented the capability to execute
RML mappings in the mapping-template library automatically.

This functionality enables users to leverage existing RML mappings by translating them
into MTL syntax, providing the capability to:

▪ leverage the mapping-template as an RML mapping processor, or

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

49

▪ adapt the generated MTL file for finer control over the output or to introduce
optimisations.

Notably, the translation from RML to MTL is implemented via MTL, showcasing the
alignment of the mapping-template solution to the approach for declarative knowledge
graph construction adopted by RML. Despite being a not trivial effort, implementing this
feature required much less work with respect to the definition of an RML mapping
processor from scratch.

The MTL mapping generated from this process produces an equivalent output to the
one generated by original RML mapping. The template parses the data from the data
sources specified in the RML mappings and applies the same mapping rules.

Figure 3-13: MTL to RML transformation process

Figure 3-14: An example RML mapping (above) and the corresponding automatically generated MTL mapping

(below).

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

50

This process is shown in Figure 3-13, with a comparison of the original RML and the
resulting MTL shown in Figure 3-14. As can be seen, the automatically generated MTL
mapping is meant to be used by the library and not the user. As such it is not human
readable, and the automatically generated variable names are randomly generated and
assigned to avoid naming collisions. The user is, however, free to manually edit the
resulting MTL mapping and introduce possible optimizations which rely on external
knowledge not present in the original RML mapping.

The mapping template is currently compliant with the rml-core specification
(https://w3id.org/rml/portal) and the execution against all the rml-core test cases is
reported and documented online34. The RML mapping can be passed with a specific
option for usage via CLI and a test case is made available to exemplify the usage as a
library.

For the second release, we will investigate the possibility of improving the compiler from
RML rules to MTL by evaluating the support for additional RML modules35 (e.g., RML-CC
and RML-star) and the automatic definition of DataOps pipelines for accessing data
sources and targets defined via RML-IO.

3.2.1.2 Chimera

The Chimera framework36 has seen numerous improvements to support the first release
of DataOps pipeline components (A3.5). In particular, aiming at increasing the
Technology Readiness Level (TRL) and enhancing its compatibility with Apache Camel.

3.2.1.2.1 Component operations and parameters

Apache Camel components use a configuration-over-code approach, allowing users to
set parameters that define the component's behaviour within a Camel route. Although
this approach minimizes the need for custom code, it can be confusing for users because
not all parameters are compatible, and some combinations can lead to invalid
configuration states.

To address this, we refactored Chimera as a set of Camel components associated with a
set of specific operations that a user should explicitly configure for execution within a
DataOps pipeline. This explicit configuration makes the component’s functionality
clearer for users. Additionally, on the backend, we redesigned the code to eliminate
invalid configuration states 37 entirely, following principles inspired by functional
programming and ML-style languages. We achieved this by using Java Records and
Sealed Interfaces, features introduced in Java 14 and 17 respectively, to enforce these
constraints in a robust and expressive way.

As an example, the GraphGet operation is used to create an RDFGraph and this
RDFGraph can be of different types, described in Section 3.1.1.2 depending on the

34 https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024/track1
35 https://w3id.org/rml/portal
36 Chimera v4.1.1, https://github.com/cefriel/chimera
37 https://fsharpforfunandprofit.com/posts/designing-with-types-making-illegal-states-unrepresentable/

https://w3id.org/rml/portal
https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024/track1
https://w3id.org/rml/portal
https://github.com/cefriel/chimera

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

51

provided component configuration. Certain configuration parameters, such as the
ServerUrl option which can be provided to create an HTTPRDFGraph do not make sense
when used in conjunction with the PathDataDir which must be set to create a
NativeRDFGraph. Apache Camel does not stop the user from providing both options,
which would lead to an undefined configuration state. By controlling the validity states,
we can detect the issue and inform the user that the configuration provided is invalid.

3.2.1.2.2 External Resource Access

To further simplify user configuration of DataOps pipelines, we introduced
ChimeraResourceBeans. A resource represents any data source required for an
operation. For example, in the Graph Add operation, RDF triples are added from a file to
an RDF graph. Here, the RDF file containing the triples is the resource. However, a
resource can also be a remote file that may require authorized access.
To handle this variety of resources flexibly and intuitively, ChimeraResourceBeans were
designed to define key details such as an access URL, serialization format, and,
optionally, an authentication method. The access URL could be a local file path (e.g.,
file://someFile) or a remote address (e.g., https://someRemoteResource), which
indicates both the type of resource and the access mechanism. This approach aligns with
Apache Camel's use of URIs and URLs, providing a consistent experience.

As an example, Figure 3-15 shows a ChimeraResourceBean that is used to access a file in
the RDF Turtle format that is stored locally.

Figure 3-15: Example of a ChimeraResourceBean defined using XML

ChimeraResourceBeans have been integrated into all three Chimera components and
are now the main way to access resources. An example of usage of a
ChimeraResourceBean can be seen in Figure 3-17, where it is used to provide a SPARQL
query to the graph component SPARQL select operation.

3.2.1.2.3 Additional Graph Component features

The Chimera Graph Component was enhanced to include two new operations, SPARQL
SELECT and ASK queries, needed to implement DataOps pipelines that dynamically
access RDF repositories such as the SmartEdge Knowledge Graph Repository (A3.3).
SPARQL SELECT queries retrieve specific data from an RDF graph by allowing users to
define the exact pattern of triples they need, effectively pulling detailed information
from datasets. SPARQL ASK queries, on the other hand, simply check whether a
particular pattern exists in the graph, returning a boolean result to confirm its presence
or absence. Examples for these types of queries are shown in Figure 3-16, on top a
simple select query that pattern matches all the subject, predicates and objects and

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

52

returns all triples while on the bottom an ask query that returns ‘true’ if there exist a
?person which is of type Author that hasWritten a specific Book1.

Figure 3-16: An example SPARQL SELECT and ASK query

The SPARQL select operation can be configured to retrieve the query results in different
formats, these being JSON, XML, CSV and TSV. If no output format is chosen, then the
result is kept in memory in for further processing. The result of SPARQL ask queries is
always a Java Boolean value, either true or false. An example route showing the SPARQL
select operation is shown in Figure 3-17, where an in-memory RDF graph is obtained,
triples are added to it and then a SPARQL select query is performed and the result
returned as JSON. As explained in the previous paragraphs, all resources, RDF triples and
the SPARQL select query are passed in as ChimeraResourceBeans.

Figure 3-17: Example Chimera route that performs a SPARQL select query and returns the result as JSON

Additionally, the Chimera graph component has been enhanced to support handling
multiple RDF named graphs simultaneously. This upgrade significantly expands
Chimera’s data handling capabilities by enabling the retrieval of results across multiple
graphs in a single query. This feature was implemented to address the common practice
of storing different types of information in separate RDF named graphs, e.g., in A3.3, the
storage of nodes description as separate graphs. SPARQL queries now by default
consider all the named graphs provided by the user to be part of the same RDF default
graph. This behaviour is not defined by the RDF and SPARQL specifications and is
something that is left to the specific triplestore implementation38. Users are still able to
query specific graphs by either specifying them in the SPARQL query or by specifying
which named graphs should be considered when creating the RDFGraph through the
GraphGet operation.

Finally, in handling these cases and using multiple RDFGraphs in the same pipeline we
fixed an inconsistency in behaviour in the underlying HTTPRepository, depending on the

38 https://blog.metaphacts.com/the-default-graph-demystified

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

53

remote Triplestore implementation, and MemoryRepository, implemented by the RDF4J
library. These objects had an undocumented difference in their behaviour when pattern
matching values specified in the SELECT clause of a SPARQL query does not find a match
in the graph. In the first case, the unmatched values will be returned with a null value,
indicating that no match was found. In the second case, those unmatched values will be
completely skipped. This led to a difference in results when performing the same query
on the same graph content but on different repository types. Because of this, non-
matching values are excluded, meaning that the HTTPRepository behaviour is applied
also to the other Repository types, leading to consistent results.

3.2.1.2.4 Additional Mapping Template Component features

The Chimera Mapping Template component has been enhanced in a similar way to the
Graph component, with improvements focused on simplifying user configuration and
streamlining resource usage via ChimeraResourceBeans. Additionally, users now have
the capability to integrate custom Java functions for data transformations into their
mappings. Previously available through the mapping-template library, this functionality
is now accessible directly within the Chimera Mapping Template component using
ChimeraResourceBeans. This feature is particularly useful when custom functions are
required, such as geolocation functions for coordinate system conversions that are not
included in the standard Java library.

3.2.1.2.5 Overall improvements

For all Chimera components, additional unit tests have also been implemented to
enhance the robustness of the Chimera graph, mapping-template, and RML
components. These tests ensure consistent functionality and help prevent regressions
during development, providing greater stability and reliability in these components.

Chimera was upgraded to version 4.4.1 of Apache Camel, the latest available at the time,
to leverage recent improvements in the Camel framework. The Chimera tutorial39 was
also updated to showcase example pipelines that utilize these components, streamlining
user onboarding.

Finally, following a structured semantic versioning process, we developed the required
mechanism to make each release available on Maven Central, simplifying reuse and
integration in other projects. Thanks to the availability of components on Maven, their
improved integration with the Camel ecosystem, the extensive documentation, and the
tutorial, it is now much easier for users to re-use the DataOps pipeline components. Of
course, each component can also be used independently and applied to heterogeneous
data integration needs that differ from those investigated within the SmartEdge project.

39 https://github.com/cefriel/chimera-tutorial

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

54

As a measurement of the effectiveness of the new developments, the Chimera
repository almost doubled the number of GitHub stars40 from external users interested
in the project from 14 to 27 since the beginning of the SmartEdge project.

3.2.1.3 Mapping Template Performance and Scalability Evaluation

To evaluate the performance and scalability of the Mapping Template component, we
performed an evaluation considering state-of-the-art benchmarks from the Knowledge
Graph Construction (KGC) Community Group41. The usage of well-known benchmark
allowed us to compare our tool with existing mapping processors implementing a
declarative approach for data and schema transformations to RDF. We report here the
primary outcomes of the evaluation performed. Complete details of the experiment
performed, and related visualizations can be found in Annex II (Section 8).

The main result is that the designed and implemented approach for generic knowledge
conversion maintains performance levels comparable to leading mapping processors for
RDF graph construction tasks and can outperform them in specific scenarios. This
advantage is mainly attributed to the efficient operation of the template engine and the
possibility offered by MTL of introducing custom optimizations in mapping rules. On the
one side, this aspect guarantees very good performance in specific scenarios like the
ones addressed in SmartEdge, i.e., service mediation with small messages to be
converted quickly. Conversely, the template engine is a sort of black box that prevents
a more granular memory consumption optimization.

These tests could not be used to assess the KPIs 2.2 (execution time) and 2.3
(concurrency of requests) defined in SmartEdge for mediated data exchanges (service
mediation use case). Indeed, benchmarks from the KGC community do not properly
address these scenarios. For this reason, we performed additional tests, reported in
Section 3.3.1, that address the KPIs by defining a DataOps pipeline developed specifically
for a SmartEdge use case. We will work to enhance the performed evaluation for the
second release and investigate the definition of a structured benchmark for dynamic
data that considers the metrics assessed in SmartEdge for KPI 2.2 and 2.3.

3.2.2 First Implementation of the DataOps Deployment Templates (A3.6)

For this first release, we defined a first set of deployment templates from the ones
identified for a DataOps pipeline. Then, we implemented demonstrator Java projects
executing a DataOps pipeline that could be used to exemplify and test the different
deployment templates. The DataOps deployment templates and the demonstrator
pipelines are made available and documented online to make them easier to reuse 42.

40 https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
41 https://www.w3.org/community/kg-construct/
42 https://github.com/cefriel/chimera-deployment-templates

https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://www.w3.org/community/kg-construct/
https://github.com/cefriel/chimera-deployment-templates

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

55

A set of deployment template is defined to build the pipeline as a JAR and package it
into a lightweight OCI container43 by leveraging a multi-stage build44. A multi-stage build
leverages an appropriate base image with all the required dependencies to execute the
build and then copies the generated JAR within a base image containing the minimum
set of dependencies to execute it. This ensures the optimisation of the final OCI
container. We make two deployment templates of this type available considering two
open-source Java Virtual Machines (JVMs): Temurin JVM and the alternative GraalVM
Community JVM. The same approach defined in the Dockerfile for the multi-stage build
can be used to run the JAR locally without containerization, assuming all the necessary
dependencies are installed.
The obtained container can be executed on a container runtime and a container
orchestrator like Kubernetes. We provide as part of the deployment templates the
required Kubernetes manifests to execute the container as a Service45 with potentially
multiple replicas.
Additionally, we implemented a deployment template to run a DataOps pipeline as a
native executable, thus not requiring a JVM installation on the host.

3.2.2.1 Deployment Templates Description

The deployment templates are exemplified by considering two distinct Camel
applications that were developed for demonstration purposes: minimal-chimera-app46
and minimal-chimera-spring-app47. Each application initializes the Camel context and
executes a basic DataOps pipeline defined using the Camel Java DSL48. The primary
distinction between the two applications lies in their underlying framework
compatibility. The first is a standalone Camel application, operating independently of
any external dependency injection framework. The second application, however, has
been engineered to integrate with the Spring framework seamlessly. We did this test to
assess the potential drawbacks from a deployment perspective of adopting an
overarching framework such as Spring to execute the DataOps pipeline.

The considered pipeline, shown in Figure 3-18, is responsible for orchestrating a
mediated data exchange from its source to its destination while applying a series of data
and schema transformations. The steps performed are:

▪ Read a local file containing raw JSON data
▪ Execute a lifting process using the Mapping Template component to transform

the data read to RDF format
▪ Execute a lowering process using the Mapping Template component to

transform the RDF to a harmonized JSON file
Both the lifting and the lowering operations are configured via appropriate
ChimeraResourceBeans referencing the mapping rules to be executed.

43 https://opencontainers.org/
44 https://docs.docker.com/build/building/multi-stage/
45 https://kubernetes.io/docs/concepts/services-networking/service/
46 https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-app
47 https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-spring-app
48 MyRouteBuilder.java

https://opencontainers.org/
https://docs.docker.com/build/building/multi-stage/
https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-app
https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-spring-app
https://github.com/cefriel/chimera-deployment-templates/blob/main/minimal-chimera-app/src/main/java/com/cefriel/MyRouteBuilder.java

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

56

The second application contains the same configuration as the first one but takes
advantage of Spring's powerful dependency injection mechanism to handle Camel
context and Chimera pipeline dependencies.

Three different deployments templates have been defined for both the core and the
spring version of the minimal chimera application, which differ in terms of the docker
image used and the type of build:

▪ Temurin49: Minimal chimera app (Core and Spring) built with JVM and running
on Temurin-17 docker image

▪ GraalVm50: Minimal chimera app (Core and Spring) built with JVM and running
on GraalVm-17 docker image (community edition)

▪ Native51: Minimal chimera app (Core and Spring) app native-built with GraalVm
JDK 17 and running on Alpine docker image

The deployment templates repository is organized into three primary folders: Temurin,
GraalVM, and GraalVM-Native. Each folder contains two subfolders: example and
example-spring. These subfolders provide Dockerfiles and Docker Compose
configurations for building and running Java applications using the respective runtime
environments. To build and to run the images from the source code, it is possible to
navigate to example folder of the specific case and use the following docker commands:

docker-compose build

docker-compose up

For example, to run the Temurin image of the core version, it is possible to navigate to
the folder chimera-deployment-templates/Temurin/example and execute the two
commands listed above. This folder contains the docker-compose, which uses a
Dockerfile located in the same folder to execute a multi-stage build of the application
minimal-chimera-app.

49 https://github.com/cefriel/chimera-deployment-templates/tree/main/Temurin
50 https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVM
51 https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVm-Native

Figure 3-18: DataOps pipeline defined to demonstrate the deployment templates.

https://github.com/cefriel/chimera-deployment-templates/tree/main/Temurin
https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVM
https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVm-Native

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

57

We provide additional details for building Native images since it involves a slightly
different process. For the Native case, the first stage uses a specific base image
cefriel/native-builder:v17. This base image is just a "wrapper" that combines the
required dependencies for building and running a native application built with GraalVM.
It is based on the ghcr.io/graalvm/native-image-community:17 image, which is required
for running a native executable and an `apache-maven-3.9.6` installation for executing
the native build. We made available via DockerHub the cefriel/native-builder:v17
image52 to simplify the build process using the provided Dockerfile. The Dockerfile also
documents the operations for a user executing the same building process on a hosting
machine without Docker.
The native build is executed with a specific maven command:

mvn -Pnative -Dagent=false -DskipTests package

The advantage of this approach is that the resulting OCI container, generated using the
multi-stage build, can leverage a minimal Docker image since in this case we do not need
a JVM. An Alpine Linux's latest version is used as base image for running the native
executable obtained as output of the first step of the build.

3.2.2.2 Deployment Templates Comparison

This evaluation compares the performance and resource utilization of the deployment
approaches enabled by the templates and the DataOps pipeline discussed in the
previous section. The comparison focuses on the following characteristics and metrics:

▪ Template: Identifier of the DataOps Deployment Template
▪ Framework: Framework used for the project
▪ JVM: Java Virtual Machine (JVM) used for building and execution of the pipeline
▪ Base docker image: Docker image used as base for executing the pipeline
▪ Executable dimension (MB): size of the executable artefact obtained as output of

the build process
▪ Image Size (MB): size of the container generated for execution
▪ Startup Time (ms): time to startup the Camel Context as measured by Camel
▪ CPU %: average CPU percentage to execute the pipeline
▪ Memory MB: average memory consumption to execute the pipeline

Table 3-2 reports the metrics for each deployment template considered.

Table 3-2: Comparison of deployment templates for the same DataOps pipeline

Template Framework JVM Base
docker image

Executable
Dimension
(MB)

Image
Size
(MB)

Start
Up
Time
(ms)

CPU % Memory
MB

Temurin Maven Build+Execution
Temurin

eclipse-temurin:17 67(Jar) 528 168 0.15/1.5 128

GraalVM Maven Build+Execution
GraalVM

ghcr.io/graalvm/jdk-
community:17

67(Jar) 821 145 0.15/3 107

Native Maven Build GraalVM
+ Execution
Without JVM

alpine:latest 109(Binary) 224 17 0.03/0.9 30

52 https://hub.docker.com/repository/docker/cefriel/native-builder

https://hub.docker.com/repository/docker/cefriel/native-builder

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

58

Spring
Temurin

Maven +
Spring

Build+Execution
Temurin

eclipse-temurin:17 140(Jar) 603 30 0.16/1.8 308

Spring
GraalVM

Maven +
Spring

Build+Execution
GraalVM

ghcr.io/graalvm/jdk-
community:17

140(Jar) 896 21 0.17/2.7 233

Spring
Native

Maven +
Spring

Build GraalVM
+ Execution
Without JVM

alpine:latest 145(Binary) 295 1 0.03/0.9 56

The results demonstrate the benefits of GraalVM native images in terms of improved
resource efficiency and faster application execution. GraalVM images utilize slightly less
resource than the one with Temuring JVM but have a higher image size.
Projects using Spring generate a JAR of higher dimension and demonstrate optimal
startup time, higher memory consumption and similar CPU usage.
It should be noted that the Community Edition of GraalVM is less efficient than the
enterprise edition53, therefore, the latter's usage is recommended if the user has a
license.

To further evaluate the different deployment templates, we performed additional
testing in the context of the performance and scalability evaluation on the demonstrator
DataOps pipeline defined for SmartEdge Use Case 2. These results are discussed in detail
in Section 3.3.1.

3.2.3 First Implementation of Low-code DataOps Configuration (A3.7)

To support the low-code configuration of DataOps pipelines (A3.7), we made various
adjustments to Chimera to simplify the configuration of the DataOps components, and
we enabled the usage of Camel Karavan for pipeline configuration via a graphical
interface.

3.2.3.1 Simplify DataOps Pipeline Configuration

For the first release, we focused on improving the integration of the Chimera
components with the Apache Camel ecosystem and bringing the improvements made
to the various components to the Apache Karavan tool. These main adjustments to
facilitate the configurability of the DataOps components within a pipeline consist of (i)
refactoring and better documenting the configurable parameters of each Chimera
component (as discussed in Section 3.2.1.2.1), (ii) changing how external resources (e.g.,
declarative mapping rules) are configured to be accessed by the Chimera components
(as discussed in Section 3.2.1.2.2).

In this section, we provide additional details on specific changes enabled to facilitate
configurability via DSL and enable the integration with the low-code Karavan tool.
Currently, it is not possible to define a list of Beans in the Camel YAML DSL, which is the
DSL also used by the Karavan plugin to configure a Route. For this reason, we refactored
the Chimera components in order to support the configuration of each operation by
providing one ChimeraResourceBean for each parameter. For example, it is possible to

53 https://www.oracle.com/a/ocom/docs/graalvm_enterprise_community_comparison_2021.pdf

https://www.oracle.com/a/ocom/docs/graalvm_enterprise_community_comparison_2021.pdf

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

59

apply multiple GraphAdd operations (i.e., the operation adding RDF triples to the graph
managed within the pipeline) in sequence by referencing different data sources.
The second change involves adding a parameter to specify the operation to be executed.
Previously, the operation could only be defined as a URI path parameter. However, by
default, the VS Code Karavan plugin could not parse the URI of custom components
correctly. This issue is effectively resolved by introducing a standard parameter for
specifying the operation. For example, a route step that previously had to be written as
from("graph://get?...") can now also be expressed as from("graph://?operation=get").
This provides a backward compatible and reliable workaround, allowing the Karavan
tool to properly interpret and handle Chimera components and their configuration.

3.2.3.2 Karavan Integration

The refactoring of Chimera components has improved their alignment with the
behaviour and structure of standard Apache Camel components. As a result, we could
enable the integration with the Karavan tool so that the user can select Chimera
components from the component palette available in Karavan while defining a DataOps
pipeline. This facilitates the integration with other components of the pipeline and
guides the configuration of the required parameters for each component.

To install and use the Chimera components with the rest of the Camel framework in the
VS Code Karavan plugin a few installation steps should be followed. The configuration
files for the Chimera components can be downloaded from the Chimera GitHub
repository54, which also contains the detailed installation steps alongside examples.

Once the Chimera components are installed, they become available for immediate use.
At this stage, users can start creating a new Camel project with the required
dependencies to integrate Chimera components. After setting up the project, the
Karavan tool can be used to visually design and configure a Route. Single components
can be picked from the Karavan component palette, as shown in Figure 3-19 and
assembled into complex routes.

Figure 3-19: Karavan component palette showing the Chimera graph, mapping-template and rml components

54 https://github.com/cefriel/chimera/tree/master/karavan

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

60

Once a route has been built, the components can be configured according to their
needed functionality. For example, given the route shown on the left side of Figure 3-20,
by clicking on a component the configuration menu shown on the right of Figure 3-20 is
opened. This menu allows users to configure the component’s parameters according to
their needs. Depending on the metadata supplied by the authors of the specific Camel
component, some configuration options may be already configured, while certain
parameters might offer a limited set of predefined values for user selection.

An example of how the tool can guide the user in the configuration, is provided by the
chimeraResource parameter for the Chimera components. Karavan can determine that
the parameter expects a Bean, and as such, allows the user the option to choose the
Beans that have been declared through the Karavan plugin, using the dedicated Bean
declaration functionality shown in Figure 3-21.

Figure 3-20: Low-code DataOps Configuration Karavan plugin interface

Figure 3-21: Example of a ChimeraResourceBean that holds the lifting MTL mapping file defined through Karavan

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

61

Through this graphical approach to building routes, Karavan creates a corresponding
DataOps pipeline defined using the YAML DSL, shown in Figure 3-22.

Figure 3-22: Example YAML Camel using Chimera components produced by the Visual Studio Code Karavan plugin

For this route, a file’s content is read, a lifting mapping is applied to convert the data
into RDF format, followed by a lowering mapping that transforms the RDF data into
another specified format. The transformed data is then routed to an AMQP exchange
for further processing or distribution. At the bottom of Figure 3-22 the
ChimeraResourceBeans used in the route are defined, these being the MTL lifting
mapping file and the MTL lowering mapping file. Both resources are defined by
specifying the location of the mapping file and its serialization format and by associating
a name to these resources. The Mapping Template component which performs both the
lifting and lowering operations refers to these resources with these names using the
#bean:lifting and #bean:lowering syntax.
Considering the YAML file generated by Karavan, another advantage is that once the
route has been defined, the user is no longer bound to use the user interface. Instead,

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

62

changes can be made directly to the YAML file. This is especially useful when routes are
part of a version control system like Git.

Once the route is completed, Karavan can export it to a dedicated Java project. The
project is initialized with all the components present in the route, and Karavan specifies
all the needed dependencies. At the moment, Karavan does not directly support the
automatic addition of dependencies for custom components, and users have to
explicitly add dependencies for Chimera components. Nevertheless, once a project has
the required dependencies, the user can modify the pipeline through the Karavan
interface, export it, and simply replace the YAML file within the Java project.

A similar problem presented itself when testing the maturity of Karavan in defining and
using Kamelets relying on Chimera components. Support for specifying external
dependencies has been found to be lacking in Karavan, but we plan to further investigate
this option for the next release by considering the latest Karavan developments55. We
also plan to investigate a tighter integration with Karavan (e.g., for direct deployment of
the pipelines) now that Chimera has been upgraded to the latest Camel version, which
was one of the completed activities for the first release of the DataOps components
(A3.5).

For the second release of A3.7, we will focus on facilitating the automatic export and
execution of pipelines from Karavan, e.g., by providing dedicated deployment templates
as part of A3.6. Furthermore, we plan to explore the use of Kamelets, which can be
catalogued within the Karavan plugin. These Kamelets offer the potential to allow users
to easily incorporate commonly used route snippets into their projects with minimal
configuration. By leveraging Kamelets, we hope to simplify further the process of
designing a DataOps pipeline for the users.

3.3 DATAOPS TOOLBOX PIPELINES FOR SMARTEDGE

This section discusses examples of DataOps pipelines explicitly developed to address the
requirements of SmartEdge use cases. These pipelines exemplify the usage of the
artefacts implemented for the DataOps toolbox and offer additional insights.
In Section 3.3.1, we consider a demonstrator DataOps pipeline defined for SmartEdge
Use Case 2 on traffic data to evaluate the performance and scalability of the overall
DataOps solution. In particular, we focused on evaluation against KPIs 2.2 and 2.3 and
comparing performances for different deployment templates.
In Section 3.3.2, we discuss how we implemented support for OPC-UA nodes for Use
Case 4 in artefact A3.3 via a dedicated set of DataOps pipelines.

3.3.1 DataOps Pipeline for harmonised traffic data (UC2)

The DataOps pipeline defined for the SmartEdge use case 2 exemplifies the usage of the
DataOps toolbox to implement a semantic conversion process to a stream of traffic data.

55 https://camel.apache.org/blog/2024/03/camel-karavan-4.4.0/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

63

The pipeline ingests real-time data from the city of Helsinki radars, which is transmitted
via WebSockets in JSON format. This data includes information on the number and types
of vehicles detected, such as whether they are cars, trucks, or other vehicle types. Once
collected, the data is converted into RDF to facilitate semantic interoperability and
structured analysis. Two ontologies are employed for this purpose: the ASAM
OpenXOntology56, which models road and vehicle-related data, and the SOSA57 (Sensor,
Observation, Sample, and Actuator) ontology, which is used to describe sensor-
generated data. Together, these ontologies provide a standardized and meaningful
representation of traffic and sensor data, enabling more effective data integration. The
DataOps pipeline is illustrated in Figure 3-23. Declarative mapping rules are defined
using the MTL and executed via the Mapping Template component.

Figure 3-23: Example DataOps pipeline for the semantic conversion of radar data

The pipeline considered for evaluation involves different DataOps pipeline components
(A3.5) to fetch data from the WebSocket, transform it using a predefined mapping
template, and collect performance metrics. The pipeline saves the transformed sample
to a file, however, by introducing an appropriate Node Connector, the same pipeline can
be leveraged to forward the data to a generic swarm target node.
A modified version of this pipeline, performing data integration among different data
sources, and details on the mapping rules defined are discussed in Deliverable D5.1 as
part of the work done for the Data Stream Fusion artefact (A5.1.4).

To test the different DataOps deployment templates (A3.6), we defined a Core and
Spring project for the same pipeline as done in Section 3.2.2 for the demonstrator
pipeline. For each DataOps deployment template, the provided files were customized
and executed to obtain the following set of images:

▪ Temurin Camel Core
▪ Temurin Camel Spring
▪ GraalVM Camel Core
▪ GraalVM Camel Spring
▪ Native-GraalVM Camel Core
▪ Native-GraalVM Camel Spring

The images were then uploaded to the Docker registry of the WP6 integration
environment and executed to collect performance and scalability metrics over time.

56 https://www.asam.net/standards/asam-openxontology/
57 https://www.w3.org/TR/vocab-ssn/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

64

The following metrics are collected and logged during the execution of the pipeline, as
shown in Figure 3-24:

▪ CM (Count Messages): Message counter
▪ CPT (Current Processing Time): Time required to harmonize the sample
▪ APT (Average Processing Time): Average processing time related to the number

of messages harmonized
▪ MXPT (Maximum Processing Time): Maximum processing time detected for

harmonizing a sample
▪ MXPT (Minimum Processing Time): Minimum processing time detected for

harmonizing a sample
▪ CSS (Current Sample Size): Size of the JSON sample received from the WebSocket

URL
▪ ASS (Average Sample Size): Average size of the Json samples received from the

WebSocket URL
▪ MXSS (Maximum Sample Size): Maximum size of the Json samples received from

the WebSocket URL
▪ MNSS (Minimum Sample Size): Minimum size of the Json samples received from

the WebSocket URL

Additionally, we record the memory and CPU usage of the container being executed
every five seconds.

The performance test is automated using a script58 that can be configured in terms of:

▪ Number of test replicas executed for the same test case
▪ Duration of the test
▪ Optional parameter to specify a time interval between one test and the other

The testing script is primarily structured around a Docker Compose template. This
template is a blueprint for running various Docker images obtained from the different
DataOps deployment templates. The script dynamically replaces the placeholders with
the relevant test-specific values in the Docker Compose template. Subsequently, the
modified template is used to start the Docker image. Performance metrics are collected
as discussed above.

58 https://github.com/cefriel/chimera-deployment-templates/blob/main/evaluation/run_tests.sh

Figure 3-24: Example logs monitoring the execution of the DataOPs pipeline

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

65

For the following evaluation, we considered 7000 JSON samples collected from the
WebSocket radar “lidar.otaniemi.2.json” in around 12 minutes with a frequency of 10
messages per second. To better highlight the differences between the various test cases,
the first 15 samples were removed for every case to slightly mitigate the impact of these
initial spikes. In the following, we discuss the main results obtained and compare the
performances between the different test cases.

Table 3-3 reports the average, maximum and minimum value for conversion time and
input size for each pipeline tested. Annex III (Section 9) also reports a visualization
comparing the trends of sample size and corresponding conversion time over all the
samples.
From the values, it can be easily noted how images running the pipeline using Camel
Core and the Temurin JVM recorded a better conversion time on average (3.25ms). In
contrast, the same Camel Core version with GraalVM kept the conversion time lower
than 15ms, while Temurin reached spikes of 44ms.
The Native versions obtained higher conversion times, but still around 10ms on average.
The Spring version of each image performed slightly worse on average in terms of
conversion time.

Table 3-3: Average/Max/Min metrics for conversion time and input size for each pipeline deployment tested.

 Avg.
Conversion
time (ms)

Max.
Conversion
time (ms)

Min.
Conversion
time (ms)

Avg. Input
size (B)

Max. Input
size (B)

Min. Input
size (B)

Temurin 3.25 44 1 2771 5322 708

GraalVM 4.93 15 <1 2416 5061 413

Native 9.99 78 1 2218 5937 126

Temurin
Spring

7.08 26 1 2398 5335 418

GraalVM
Spring

6.97 19 1 2724 5327 417

Native
Spring

10.92 87 1 3826 7380 998

In terms of CPU and memory utilisation, we summarise the main insights for each
deployment template:

▪ Camel Core: the results from the Camel core tests demonstrated nearly identical
performance between the Temurin and GraalVM images. This suggests that, for
the considered DataOps pipeline, the choice of runtime environment does not
significantly impact CPU and memory utilization.

▪ Camel Spring: when testing the Spring version, both Temurin and GraalVM
images exhibited similar performance levels. However, a slight performance
advantage in terms of CPU utilization was observed for the Spring applications
running on the GraalVM image. This marginal improvement indicates that
GraalVM might offer a modest performance boost for Spring-based workloads.

▪ Camel Native (Core and Spring): Native images instead demonstrated a
significant performance improvement in terms of both CPU and memory
utilization compared to the standard (Temurin and GraalVM) images. This is

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

66

attributed to the ahead-of-time compilation that native images undergo,
resulting in smaller, faster-starting applications. When comparing native Camel
core and Spring applications, the Spring version consistently outperformed the
core version in terms of both CPU and memory usage. This suggests that the
Spring framework, when compiled into a native image, offers additional benefits
in terms of resources utilization.

Annex II (Section 7) presents detailed visualizations of memory and CPU utilization for
each test case and analyses them by comparing the different deployments tested.

In summary, Native images offer lower resource utilization but register higher
conversion times. On the contrary, images with Camel Core run through a JVM obtain
the best conversion time performance while having higher CPU and memory utilization.
Considering the KPI 2.2 and 2.3, the JSON stream (10 req/s, 3Kb) was converted without
dropping requests with an average conversion time lower than 4ms. Regarding the
baselines [Scrocca21] of 100ms for 50KB XML and 100 concurrent requests/s, the
average conversion time registered (<4ms) shows a potentially huge improvement and
should enable processing of 250 req/s. However, we will have to perform additional
tests for the second release, considering bigger payloads and higher concurrency of
requests. Moreover, the test showcased how the input data source generated messages
with unpredictably varying frequency and input size.

For these reasons, to obtain better comparable results for each image for the second
release, we plan to (i) record the data from the original input data source, (i) keep
messages with a bigger payload, or manually edit them to reach at least 50kB, and (iii)
reproduce the stream with messages sent at regular intervals. This would also enable
the possibility of executing tests by varying the interval between requests, i.e., reaching
the 100 req/s (interval 10ms) of the considered baseline.

3.3.2 DataOps Pipeline for OPC-UA support in A3.3 (UC4)

The support for OPC-UA for the Knowledge Graph Repository (A3.3) is developed using
the DataOps toolbox and designed to define pipelines that perform a data
harmonization process using the Chimera components. Such pipelines enable the
description in the repository of swarm nodes for Use Case 4 that are compliant with the
OPC UA standard59. Moreover, it enables the searching of OPC UA nodes according to
specific capabilities.

More specifically, DataOps pipelines are used to insert and retrieve data from the
Triplestore used by the Knowledge Graph Repository by carrying out two harmonization
processes: a lifting operation that transforms data from an OPC UA NodeSet in XML
format to RDF format, and a lowering operation that queries data in RDF format and
returns an OPC UA NodeSet in XML. The first release of the pipeline is able to transform
and retrieve an OPC UA NodeSet in its entirety. Moreover, it could be used to perform
any query on the integrated RDF graph. For the second release, we will explore the

59 https://camel.apache.org/

https://camel.apache.org/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

67

possibility of generating a custom OPC UA Node Set based on the result of a custom
query by the user, i.e., containing only the nodes matching the provided query.

The implemented DataOps pipeline leverages a remote Triplestore for storage and
querying. For the first release, we implemented and tested the solution with two
Triplestore with open license: RDF4J Server60 and GraphDB Free61.

The application is available through a Docker image built using the DataOps deployment
templates. Two docker-compose files are defined depending on the Triplestore to be
used. The Docker image can be easily configured via environment variables to provide
the correct endpoints for connecting to an already existing Triplestore. The images are
uploaded in the WP6 Docker Registry and executed on Kubernetes in the integration
environment via a dedicated set of manifest files.

The pipelines leverage Jetty Camel component62 for creating a standalone rest service
which provides the following API endpoints:

1. POST: <Server-Url>:<port>/api/v1/graph

2. POST: <Server-Url>:<port>/api/v1/sparql

3. GET: <Server-Url>:<port>/api/v1/graph?named_graph_id={Named graph id}

4. GET: <Server-Url>:<port>/api/v1/graph/names

The POST method on the /api/v1/graph endpoint takes as body an OPC UA NodeSet in
XML. It executes a lifting transformation to produce RDF triples according to the OPC UA
ontology. RDF content is saved in the repository in a dedicated named graph. The
identifier of the named graph is extracted from the request body, considering the OPC
UA Model associated with the NodeSet. Currently, we expect each OPC UA NodeSet to
define nodes for a single OPC UA Model.
The GET method on the /api/v1/graph endpoint returns the content of the named
graph, specified with the parameter named_graph_id. The RDF is retrieved from the
repository and converted via a DataOps pipeline to a corresponding OPC UA XML
NodeSet.
The GET method on the /api/v1/graph/names endpoint returns the list of all the named
graphs which are saved on the triple store.
The POST method on the /api/v1/sparql endpoint takes as body a SPARQL query as text
and executes it on the triple store returning the result set. The result can be requested
according to different data formats (e.g., CSV, JSON). This enables querying the
repository for finding OPC-UA nodes according to specific capabilities.

60 https://rdf4j.org/documentation/tools/server-workbench/
61 https://graphdb.ontotext.com/
62 https://camel.apache.org/components/4.8.x/jetty-component.html

https://rdf4j.org/documentation/tools/server-workbench/
https://graphdb.ontotext.com/
https://camel.apache.org/components/4.8.x/jetty-component.html

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

68

Figure 3-25 describes each pipeline and the DataOps components (in green) used to
implement them. A dedicated set of mappings defined using MTL and custom functions
(OPCUALiftingUtils and OPCUALoweringUtils) are executed using the Mapping Template
component to perform the lifting and lowering operations.

Notably, the defined pipelines can initialize a dedicated repository on the Triplestore if
it is not already available. Furthermore, we implemented a basic authentication
mechanism that authenticates all the requests received on the REST endpoints.

For the second release, we plan to improve the management of NodeSets relying on the
same set of companion specifications and to implement a strategy for dealing with
different versions of the same OPC UA NodeSet in the RDF Graph.

Figure 3-25: DataOps pipelines enabling support for OPC UA Nodesets in the A3.3 artefact

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

69

4 CREATION AND ORCHESTRATION OF SWARM INTELLIGENCE APPS

In this section, we discuss the final design and first implementation of the artefacts
dedicated to the creation and orchestration of swarm intelligence Apps, as part of Task
3.3 of SmartEdge WP3. More specifically, these are artefacts:

▪ A3.8: Semantic Recipe Integration with Mendix
▪ A3.9: Recipe-TD Matcher
▪ A3.10: Mendix Recipe Orchestrator

4.1 FINAL DESIGN

This section presents the final design of each artefact.

4.1.1 Final Design of Semantic Recipe Integration with Mendix (A3.8)

One of the key advantages of the SmartEdge ecosystem lies in the ability to create
domain-specific Apps using Low-Code development tools. The idea behind this concept
is to facilitate and accelerate development time in Edge-enabled systems, unburdening
application engineers from device configuration and other complex specific settings. As
explained in the previous section, in the SmartEdge approach we propose the creation
of Recipes that encapsulate the structural key characteristics of an application of a given
domain.
These Recipes work as template or stereotype that indicates which are the main steps
or operations that the swarm App has to fulfil, along with the goals, capabilities needed
from the nodes, interactions among them, as well as input and output data. As seen in
artefact A3.1, these Recipes are specified as knowledge graphs based on semantic
models, with the ability to reuse existing vocabularies from domain-specific areas. These
Recipes are then the basis for the SmartEdge approach for low-code swarm App
development, as they constitute a declarative representation of what the app should do
and how it should be structured.
With these considerations at hand, the Mendix platform provides an interesting starting

point for enabling the implementation of the Recipes specified in SmartEdge. Mendix is

a low-code platform with both design-time and runtime environments that facilitates

the process of developing applications in different domains, including IoT components.

Mendix Studio Pro (currently in version 10.x) is the design-time component of Mendix,

which provides “a visual model-driven IDE with customizable themes, drag-and-drop

functionality, reusable components, and full-stack capabilities”63. This is shown in Figure

4-1. The orchestration in SmartEdge is configured at design time using this tool, which

permits organizing the different data sources (e.g., coming from edge nodes),

establishing a flow of tasks and computations that need to be performed, and the nodes

that are involved.

63 https://www.mendix.com/platform/ide/

https://www.mendix.com/platform/ide/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

70

Figure 4-1: Mendix Studio Pro: design time App environment.

However, Mendix Studio Pro lacks the ability to employ ontologies to represent nodes
in the system, capabilities, steps, or flows. It also lacks the option of including external
semantic vocabularies, e.g., from existing standards, in order to represent input,
outputs, or metadata information. Although Mendix Studio Pro counts with a number
of plugins in the Mendix marketplace, it does not have built-in components able to
connect with Triple stores or Knowledge Graphs, in order to connect with the Recipes
proposed in SmartEdge.
The SmartEdge Artefact A3.8 precisely addresses this gap, and consists of an integration
component that enables the reuse of semantic Recipes within the Mendix development
environment, i.e., Mendix Studio Pro.
With the integration of the semantic Recipe Knowledge Graph (a triple store containing
the semantic recipes) within Mendix, it will be possible to discover and retrieve existing
Recipes, related to specific swarm tasks. For example, a Recipe created for monitoring
temperature measurements using a swarm of sensors could be made available in the
Knowledge Graph. This Recipe would use RDF to describe what are the goals of the task,
and the capabilities required from participating sensors in the swarm (e.g., measure
temperature values, with a given frequency, etc.).
The architectural view of Artefact A3.8 is depicted in Figure 4-2. The Semantic Recipe
integration for Mendix has access to Recipes stored as RDF knowledge graphs in a triple
store database. Through SPARQL queries, it is possible to query and filter suitable
Recipes that can be imported into Mendix, providing an initial set of steps in a micro- or
nano-flow. Once the Recipe is loaded, the low-code developer can make all necessary
modifications to complete the application (based on the Recipe) and customize it as
needed.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

71

Activity Activity Activity
SmartEdge A3.10

MX recipe orchestrator

SmartEdge A3.8
Semantic Recipe
integration in MX

Domain
Ontologies

SmartEdge A3.1
Recipe model

OPC UA RESTWoT

Mendix Studio
design enviroment

SmartEdge App
developer

SmartEdge
Recipe

Repository

• Goals
• Interactions
• Operations
• Capabilities
• Prerequisites

Figure 4-2: Semantic Recipe Integration.

The Mendix semantic Recipe integration functionalities can be summarized as follows:

▪ Recipe search: list available Recipes and search/filter according to different
criteria: name, domain, capabilities, input/output, interactions.

▪ Recipe selection: from the Recipes available in the repository, select one and
import it into the Mendix design-time environment, where further modifications
can be made.

▪ Recipe export: from an existing Mendix flow, export a semantic Recipe and store
it in the repository, from where it can later be retrieved.

Assumptions: This artefact depends on other SmartEdge artefacts, and makes certain
assumptions as we detail next:

▪ This component requires the SmartEdge schema (ontology) from A3.1, which
provides the blueprint for specification of nodes in the swarm. The SmartEdge
schema defines the concepts of coordinator, orchestrator and other nodes that
will participate in the Recipe.

▪ The artefact also requires the SmartEdge Recipe model, which is directly used to
model the operations and capabilities in the Recipe, then included in the Mendix
flow.

▪ The artefact makes use of the SmartEdge Knowledge Graph repository (A3.3)
where the semantic Recipes are stored and queried.

▪ This artefact assumes the usage of Mendix as low-code development tool,
although it could be in the future adapted to other similar tools based on flow-
shaped declarative application development environments.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

72

4.1.2 Final Design of Recipe-TD Matcher (A3.9)

Having the Recipes integrated into the Mendix Studio Pro environment, it is necessary
to link the capabilities specified in the Recipe, with actual nodes available in the actual
deployment. Nodes in the system are specified using the WoT TD specification64. In
some scenarios nodes can also connect through OPC UA connectors as well.

Figure 4-3: W3C Thing Description core vocabulary (source: https://www.w3.org/TR/wot-thing-description/)

As we can see in Figure 4-3, the TD core vocabulary provides the essential information
needed to characterize a Thing, e.g., a device or sensor that maps to a node in the
swarm. An essential information contained in the TD is the specification of what
capabilities it has, which are needed by the Recipe. Capabilities in TD are specified
through the concept of “affordances”, e.g., action, event or property affordances.

The goal of Artefact 3.9 is to match the requirements and specifications described in the
semantic Recipes, to the capabilities indicated in the WoT TD representations of the
swarm nodes.

Taking a specific Recipe, the matching tool will look for the swarm devices available in
the TD directory and identify those that satisfy the necessary conditions of the Recipe.
Using the results of the matching, the application flow can be completed at design time,
including the swarm nodes that have been suggested by the matcher. Affordances in the
TDs will provide the necessary abstractions to represent the device capabilities, as well
as the technical means to access them (endpoints, interfaces). As it can be seen in Figure
4-5 the SmartEdge Recipe model directly links capabilities to affordances at the
conceptual level.

64 https://www.w3.org/TR/wot-thing-description/

https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

73

Do Some Stuff
SmartEdge A3.10

MX recipe orchestrator

SmartEdge A3.8
Semantic Recipe
integration in MX SmartEdge A3.9

Recipe-TD matcher

SmartEdge A3.1
SmartEdge

schema

SmartEdge A3.1
Domain

Ontologies

SmartEdge A3.1
Recipe model

OPC UA RESTWoT

Mendix Studio
design enviroment

SmartEdge App
developer

SmartEdge A3.3
KG Repository

SmartEdge A3.4
Mendix toolchain

Matching
TDRecipe

Figure 4-4: Matchmaking between the capabilities required in the Recipe and the nodes available in the Swarm at
design time

Assumptions: This artefact depends on other SmartEdge artefacts, and makes certain
assumptions as we detail next:

▪ This artefact requires the existence of semantic Recipes as described in the
artefact A3.1 and used in artefact A3.8.

▪ TDs for existing swarm devices, and ideally the KGs and TD directory to host
them, respectively.

▪ Nevertheless, for a first version the matcher may also work as a standalone
version only connected to Recipe/TD endpoints.

Figure 4-5: Visual representation of the main concepts of the SmartEdge semantic Recipe model, from Artefact 3.1

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

74

4.1.3 Final Design of Mendix Recipe Orchestrator (A3.10)

The goal of this artefact is to enact the Recipes created with Mendix following a given
Recipe and after the matching with existing devices has been performed.

This will include the coordination of the operations to be executed by different nodes in
the swarm. Therefore, the orchestrator will also include the instantiation of the
semantic description of the tasks, goals, sub-tasks, and skills established in the
Recipe. The coordinator will then need to find and discover which nodes comply with
these requirements. In cases where the orchestrator and coordinator roles are
implemented by the same component (e.g., Mendix runtime), these two roles can be
merged in only one entity. In certain cases, the orchestrator may not find the necessary
resources to achieve the Recipe, and it could either fail or latently wait until the
necessary resource can be scheduled.

This component assumes the usage of Mendix to perform the orchestration tasks. Using
an existing Recipe, the low code developer we'll adapt it in order to customize the
application, based on the Recipe. Then with the help of the previous artefact the
matching of the Recipe and the nodes in the swarm will be performed. Once the bindings
with the necessary devices have been established, the Mendix flow will be ready to be
instantiated by the runtime. Different steps in the flow may require the interaction with
edge and IoT devices. Using the Mendix tool chain artefact, different connectors will be
made available. These connectors will allow interfacing devices through REST APIs,
Bluetooth, etc. For instance, connection to Bluetooth devices can be specified through
TD semantic affordances.

This artefact takes the following assumptions:

▪ Application flows are built based on a semantic Recipe using the SmartEdge
Recipe model.

▪ Nodes in the swarm are matched against the Recipes as specified in the matcher
artefact.

▪ The orchestration runtime is provided by Mendix.
▪ Interactions with IoT and edge devices are provided by connectors embedded in

the Mendix flow.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

75

Do Some Stuff
SmartEdge A3.10

MX recipe orchestrator

SmartEdge A3.8
Semantic Recipe
integration in MX SmartEdge A3.9

Recipe-TD matcher

SmartEdge A3.1
Domain

Ontologies

SmartEdge A3.1
Recipe model OPC UA RESTWoT

Mendix Studio
design enviroment

SmartEdge App
developer

SmartEdge A3.3
KG Repository

SmartEdge A3.4
Mendix toolchain

Node Node Node

BLE DDS MQTT

SmartEdge A3.2
Middleware with SSI

REST

TDTDTD

Industrial PLC

OPC UA

OPC UA
model

SmartEdge A3.5-3.7
DataOps

SmartEdge A3.5-3.7
DataOps

BLE WoT Connector

SmartEdge A3.1
SmartEdge

schema

SmartEdge A3.11
Streaming Media

Protocol

Figure 4-6: Orchestration of Mendix applications in A3.10, based on SmartEdge Recipes.

4.2 FIRST IMPLEMENTATION

4.2.1 First Implementation of Semantic Recipe Integration with Mendix (A3.8)

This component is targeted for the SmartEdge solution 2 release. For milestone M1, the
integration is at an initial state. The semantic Recipe model is still being developed as
part of WP3, including the Knowledge Graph (KG) that will host the Recipes. In parallel,
as part of Task T3.3, we have studied Mendix’s flows in order to determine how the
integration implementation will be incorporated. Java extensions in Mendix have been
tested, including usage of REST service calls, which could be employed to access the KG.

Examples of Recipes used so far include simple lamp control-based examples, as well as
Recipes based on the SmartEdge use cases. For instance, the following snippet of a
semantic Recipe is designed to describe an application flow for a simple Lamp activation
system. Notice that the Recipe reuses the semantic artefact A3.1, but can also reference
other external ontologies and vocabularies. For example, in the snippet below we refer
to the SAREF model65.

65 https://saref.etsi.org/core/v3.1.1/

https://saref.etsi.org/core/v3.1.1/

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

76

{

 "@type":[

 "RecipeModel:Recipe"

],

 "title":"Lamp control Recipe",

 "RecipeModel:hasCapability":{

 "@type":[

 "saref4bdlg:Lamp"

]

 }

…

}
Figure 4-7: Snippet of a semantic Recipe for a test Lamp application.

Within the Recipe, different elements can be specified. For instance, interactions may
include operations to be executed at the device level. In the example below, an
operation of data retrieval is specified, which obtains the status of the Lamp. The type
of interaction, as well as operation details, input and output data, are specified using a
semantic representation, as in the following JSON-LD snippet.

"RecipeModel:hasInteraction":[

 {

 "status":{

 "description":"current status of the lamp",

 "@type":[

 "saref4bdlg:colorTemperature",

 "RecipeModel:Interaction"

],

 "RecipeModel:hasOutputData":{

 "type":"string"

 },

 "RecipeModel:operation":"RecipeModel:Retrieve"

 }
Figure 4-8: JSON-LD snippet of n interaction detail in a sample Recipe.

Different approaches are currently explored to integrate these Recipes into the Mendix
design-time environment, potentially importing nanoflows into Mendix, or adding flow
components that are able to communicate with the TD repository (artifact A3.3) and
SmartEdge Recipe Knowledge Graph. For example, the Recipe used the example above
reflects the workflow presented in the Mendix flow in the figure below.

Figure 4-9: Mendix flow of a sample application

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

77

Next steps:

▪ Different options are being tested regarding the importing of semantic Recipes
into Mendix flows. Mendix supports a JSON format for representing the flows,
and Chimera can be used as a means to translate from one model to the other,
although it remains to implement the full automation of the loading of Recipes.
For the time being this is an option to export Mendix flows, although there is not
yet a corresponding import option at the moment.

▪ Testing of sample Recipes, in particular form the SmartEdge use cases will be key
to demonstrate the efficacy of the artefact in managing Recipes and integrating
them with the Mendix Studio Pro tool.

4.2.2 First Implementation of Recipe-TD Matcher (A3.9)

The matching component is targeted for the SmartEdge solution 2 release. As part of
Task T3.3, we have provided sample TD RDF descriptions using JSON-LD and started
using local deployments of the Node-WoT66 servient for hosting TDs. The inclusion of
Node-WoT within Mendix is currently under testing. It has so far been used by using a
browser bundle running within Mendix.

As an example for the matching process, the Recipe snippet below represents part if the
description of an exercise in a smart healthcare solution for digital rehabilitation. The
Recipe snippet includes information, among other things, about the required devices
needed, specified in terms of the capabilities that they should provide. In the example
below (Figure 4-10) this refers to the capacity of providing rotation data for the limbs of
the patient.

ex:exerciseRecipe1

 rdf:type se:Exercise ;

 schema:identifier "1" ;

 schema:additionalType PhysicalTherapy: ;

 schema:name "Movement control tests-1" ;

 schema:description "Active cervical flexion and extension" ;

 schema:video <https://youtu.be/uKjSvHtylUo> ;

 schema:duration "120s" ;

 ex:repetition "3" ;

 ex:requiredDevice ex:headSensor,ex:shoulderSensor;

 ex:requiredMeasurements fe:hasConnectionFunction, fe:hasRotationFunction ;

 ex:procedureType ex:Noninvasive ;

 schema:howPerformed [

 schema:text "The patient flexes the cervical spine so that the chin moves

towards the sternum. The patient then extends the cervical spine into extension as

far as possible and finally returns to the upright position."

] ;

66 https://github.com/eclipse-thingweb/node-wot

https://github.com/eclipse-thingweb/node-wot

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

78

 schema:description "Allow head movements, do not allow shoulder

movements" ;

 ex:successMeasurements fe:hasSuccessEulerMeasurements,

fe:hasSuccessQuaternionMeasurements ;

 ex:alert "positiveCount_anyShoulderMovements, wrongHeadAngle" .
Figure 4-10: Example of a Recipe snippet for a healthcare physiotherapy Recipe in Turtle format.

The Recipe-TD matcher then needs to perform SPARQL queries to identify which TDs
contain the capabilities that are needed in order to fulfill the goals of the Recipe. In the
example below (Figure 4-11), a wearable device includes in its TD descriptor information
including the capabilities of the sensor. Given that it implements one type of rotation
monitoring function (e.g., Euler rotation), it can be one of the devices potentially
matched for the Recipe provided above. Further details could also be included in the
mapping, including sensor accuracy, trust, frequency, etc.

se:thingy52

 rdf:type se:Device ;

 se:role se:Sensor ;

 se:title "smartEdgeSensor" ;

 se:description "Detects and responds to some type of

input from the physical environment—e.g., head movements" ;

 se:location "head or shoulder" ;

 se:properties fe:hasCapability, fe:identifier_service ;

 se:actions fe:hasConnectionFunction,

fe:hasColorFunction ;

 se:events fe:hasApplicationFunction ;

 se:goals fe:hasRotationFunction ;

 se:knowledge "compensationInfo" .
Figure 4-11: Snippet of a TD description of a device including details about its capabilities, in Turtle format.

Next steps:
▪ Refine the SPARQL queries to perform the matching between Recipes and TDS.
▪ Provide advanced matching parameters that may include detailed capability

details, e.g., data quality, frequency, etc.
▪ Given that both Recipes and TDs can be externalized in independent Knowledge

Graph stores, the artefact A3.9 will also be made available as an independent
library.

4.2.3 First Implementation of Mendix Recipe Orchestrator (A3.10)

This component is targeted for the SmartEdge solution 2 release. For the moment, the
Mendix runtime has been tested with initial versions of UC4 and UC5b. This was
important, in order to test device data retrieval from Mendix Apps, (e.g., using Nordic
Thingy52 devices through BTE), and in general to test the application flow. For the next
steps, we will continue with more complete flows from the use cases that will make use
of Mendix, so that we capture more complete flows. These will be used to provide more
complete Recipes, which will be matched with device capabilities as explained in the
previous artefact.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

79

One of the developments in this artefact includes the inclusion of microflow actions in
Mendix that allow interacting with Thing Description servers. For instance, in the
example below (Figure 4-12), an Invoke Action is called to perform an action exposed
through an affordance in a TD. In the example it is simply incrementing a counter
through HTTP verbs, but following the TD standard it can be used to interface any IoT
device able to interpret those affordance invocations.

Figure 4-12: Mendix flow example, connecting to a TD counter.

In the figure below (Figure 4-13) we can see how a property affordance can be called,

e.g., to read a certain property (in the simple example the value of the counter), in

JavaScript code. Custom code can be added by the developer at this level in case of

needing further functionalities.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

80

Figure 4-13: Reading a property from a TD description from JS code in a Mendix flow.

Similarly, through the property affordance of the TD, it is possible to modify the value

of a given property, as seen in the example below (Figure 4-14). The same function can

be reused to set any IoT device property, e.g., a state, parameter, or any other kind of

value that is exposed through the TD interface.

Figure 4-14: Writing back to a TD exposed property using JS code inside Mendix.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

81

Once these interactions through the TD interface are established, then the low-code

developer can complete the application, e.g., a front-end webpage designed to display

the values of the counter. In the screenshot below (Figure 4-15) we can see how this is

done for the simple counter example on a basic front end web page designed in Mendix.

Figure 4-15: Accessing TD-retrieved properties from a Mendix-created application page.

At runtime, we have tested these TD invocation activities in a flow orchestrated by the
Mendix runtime. To do so, first the Node-WoT server (an Eclipse implementation of a
WoT server through TDs) is started independently through a Docker container (Figure
4-16).

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

82

Figure 4-16: Accessing the Node-WoT server, counter example exposed through a TD.

And then the Mendix project is run, and the application can read, write and display the

values exposed by the TD, as it can be seen in the console output and the application

frontend (Figure 4-17).

Figure 4-17: Mendix App frontend. TD accessed through the application during runtime

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

83

Runtime Invoke Action (Increment) and read property again through the TD interface

(Figure 4-18):

Figure 4-18: Runtime invoke action: TD property read through the Mendix runtime

Next steps:

▪ Consolidate the implementation and integration of TD invocation actions in
Mendix

▪ Integrate the TD-Recipe matching tool into the Mendix orchestration workflow.
▪ Test the orchestration and execution of instantiated Recipes in collaboration

with use case owners.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

84

5 CONCLUSIONS

This document described the first release of artefacts implemented in SmartEdge to
enable the concept of Continuous Semantic Integration (CSI). This concept is broken
down into (i) Standardized Semantic Interfaces (Section 3); (ii) the DataOps toolbox for
semantic management of things and embedded AI apps (Section 4); (iii) Creation and
orchestration of Swarm Intelligence apps (Section 5). This deliverable described the final
design of the CSI tools by revising and extending deliverable D3.1 and considering the
final list of requirements from D2.2. Section 1, provided an overview of the tasks
required for CSI and described how the 11 artefacts identified for WP3 are expected to
be integrated to enable CSI for a SmartEdge use case. Section 2 also reported the
expected integration with WP4 and WP5 and the current status for each artefact.

This deliverable provided the following contributions considering the SmartEdge Obj.2
“Middleware and tools for continuous semantic integration”:

▪ standardized semantic interface: first implementation of interoperable semantic
models for the description of nodes (statically and at runtime) and applications
(i.e., Recipes), repository for the store and retrieval of interoperable
descriptions, middleware solutions for standardized interfaces among nodes;

▪ continuous conversion process based on declarative mappings and scalable from
edge to cloud: first implementation of reusable and modular component for the
declarative definition of conversion pipelines, templates for scalable
deployments of pipeline on Edge and Cloud devices, low-code approach for
pipeline definition;

▪ declarative approach for the creation and orchestration of apps based on swarm
intelligence: final design and initial developments to support the definition of
semantic Recipes, perform matchmaking of nodes for Recipes, and orchestrate
Recipes across nodes.

The second release will focus on extending and improving artefacts released for the first
two objectives by implementing feedback from the first validation phase within WP6.
Furthermore, the artefacts planned for release 2 will be made available.

The status of KPIs for Work Package 3 (WP3) is presented in this deliverable (see Table
2.4), considering the progress made on the first implementation of the tools. A full
report against SmartEdge requirements and KPIs will be provided in D6.1 considering
the first release of the integrated SmartEdge solution.

The successor of this deliverable, i.e., D3.3 will describe the final implementation of tools
for Continuous Semantic Integration based on the collected feedback.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

85

6 REFERENCES

[Arenas21] J. Arenas-Guerrero, M. Scrocca, A. Iglesias-Molina, J. Toledo, L. Pozo-Gilo, D.
Doña, Ó. Corcho and D. Chaves-Fraga, “Knowledge Graph Construction with R2RML and
RML: An ETL System-based Overview”, Proceedings of the 2nd International Workshop
on Knowledge Graph Construction co-located with 18th Extended Semantic Web
Conference (ESWC 2021), 2021, CEUR Workshop Proceedings, http://ceur-ws.org/Vol-
2873/paper11.pdf

[Arenas22] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M.S. Pérez and O. Corcho,
“Morph-KGC: Scalable knowledge graph materialization with mapping partitions”,
Semantic Web (2022). doi:10.3233/SW-223135

[Hohpe04] Hohpe, Gregor, and Bobby Woolf. 2004. “Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions”. Addison-Wesley Professional.

[Schiekofer19] Schiekofer, Rainer, et al., "A Formal Mapping between OPC UA and the
Semantic Web.", IEEE 17th International Conference on Industrial Informatics (INDIN),
2019, doi: 10.1109/INDIN41052.2019.8972102.

[Scrocca21] Scrocca M., Carenini A., et al., “Semantic Conversion of Transport Data
Adopting Declarative Mappings: An Evaluation of Performance and Scalability”, Sem4Tra
2021 @SEMANTiCS, CEUR-WS.org, http://ceur-ws.org/Vol-2939/paper2.pdf

[Scrocca24] Scrocca Mario, Alessio Carenini, Marco Grassi, Marco Comerio, and Irene
Celino, "Not Everybody Speaks RDF: Knowledge Conversion between Different Data
Representations.", Fifth International Workshop on Knowledge Graph Construction@
ESWC2024, 2024, https://ceur-ws.org/Vol-3718/paper3.pdf

[Vetere05] Vetere, G., and M. Lenzerini. 2005. “Models for Semantic Interoperability in
Service-Oriented Architectures.” IBM Systems Journal 44 (4): 887–903.
https://doi.org/10.1147/sj.444.0887

[Vleeschauwer24] E.d. Vleeschauwer, P. Maria, B.D. Meester and P. Colpaert, “RML-
view-to-CSV: A Proof-of-Concept Implementation for RML Logical Views”, Proceedings
of the 5th International Workshop on Knowledge Graph Construction, CEUR Workshop
Proceedings, Vol. 3718, 2024, https://ceur-ws.org/Vol-3718/paper2.pdf

http://ceur-ws.org/Vol-2873/paper11.pdf
http://ceur-ws.org/Vol-2873/paper11.pdf
http://ceur-ws.org/Vol-2939/paper2.pdf
https://ceur-ws.org/Vol-3718/paper3.pdf
https://doi.org/10.1147/sj.444.0887
https://ceur-ws.org/Vol-3718/paper2.pdf

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

86

7 ANNEX I – SAMPLE RECIPE FOR UC4

This annex presents a sample Recipe for UC4 which is described in Section 2.2.2.1.

{
"@context":[
 {
 "RecipeModel":"http://www.semanticweb.org/SmartEdge/RecipeModel/",
 "saref4bdlg": "https://saref.etsi.org/saref4bldg/",
 "saref": "https://saref.etsi.org/saref/",
 "iot": "http://iotschema.org/",
 "@id":"http://www.semanticweb.org/SmartEdge/RecipeModel/",
 "@type":[
 "http://www.w3.org/2002/07/owl#Ontology"
]
 }],
"@type":[
 "Recipe"
],
 "title":"Metaverse product assembly Recipe",
 "NLQ": "An application to simulate the assembly of a product in assembly station in metaverse",
 "hasCapability":{
 "@type":[
 "SmA:kill_Insert" , "SmA:Skill_Load_Unload"
]
 },
 "hasIngredients":[
 {
 "load":{
 "@id":"b4493a89cfd4a062",
 "NLQ": "find a skill to load the plate into an assembly module",
 "description":"load plate to a module",
 "@type":[
 "SmA:kill_Load_Unload",
 "Ingredient"
],
 "hasInputData":{
 "type":{
 "argument1": {
 "name": "sourcePos",
 "type": "number"
 },
 "argument2": {
 "name": "DestinationPos",
 "type": "number"
 },
 "argument3": {
 "name": "RFID",
 "type": "number"
 }
 }
 },
 "hasOutputData":{
 "type":{
 "argument1": {
 "name": "ErrorID",

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

87

 "type": "number"
 }
 }
 },
 "operation":"Update",
 "interactsWith":[
 {
 "hasSerialNumber": "1",
 "@id": "ccfca6fc0f1c1e9c",
 "operation":"Update"
 }
]
 }
 },
 {
 "insert":{
 "@id":"ccfca6fc0f1c1e9c",
 "NLQ": "find a skill to insert a block into the plate",
 "description":"insert a block into the plate",
 "@type":[
 "SmA:Skill_Insert",
 "Ingredient"
],
 "hasInputData":{
 "type":{
 "argument1": {
 "name": "Position",
 "type": "number"
 },
 "argument2": {
 "name": "BuildingBlockTypeID",
 "type": "number"
 },
 "argument3": {
 "name": "Orientation",
 "type": "number"
 },
 "argument4": {
 "name": "RFID",
 "type": "number"
 },
 "argument5": {
 "name": "CurrentConfiguration_BuildingBlockTypeId",
 "type": "number"
 },
 "argument6": {
 "name": "CurrentConfiguration_Orientation",
 "type": "number"
 }
 }
 },
 "hasOutputData":{
 "type":{
 "argument1": {
 "name": "ErrorID",
 "type": "number"
 }

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

88

 }
 },
 "RecipeModel:operation":"RecipeModel:Update",
 "interactsWith":[
 {
 "hasSerialNumber": "2",
 "@id": "dcfca6fc0f1c1e9d",
 "operation":"Update"
 }
]
 }
 },
 {
 "insert":{
 "@id":"dcfca6fc0f1c1e9d",
 "NLQ": "find a skill to insert a block into the plate",
 "description":"insert a block into the plate",
 "@type":[
 "SmA:Skill_Insert",
 "Ingredient"
],
 "hasInputData":{
 "type":{
 "argument1": {
 "name": "Position",
 "type": "number"
 },
 "argument2": {
 "name": "BuildingBlockTypeID",
 "type": "number"
 },
 "argument3": {
 "name": "Orientation",
 "type": "number"
 },
 "argument4": {
 "name": "RFID",
 "type": "number"
 },
 "argument5": {
 "name": "CurrentConfiguration_BuildingBlockTypeId",
 "type": "number"
 },
 "argument6": {
 "name": "CurrentConfiguration_Orientation",
 "type": "number"
 }
 }
 },
 "hasOutputData":{
 "type":{
 "argument1": {
 "name": "ErrorID",
 "type": "number"
 }
 }
 },

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

89

 "RecipeModel:operation":"RecipeModel:Update",
 "interactsWith":[
 {
 "hasSerialNumber": "3",
 "@id": "ecfca6fc0f1c1e0e",
 "operation":"Update"
 }
]
 }
 },
 {
 "insert":{
 "@id":"ecfca6fc0f1c1e0e",
 "NLQ": "find a skill to insert a block into the plate",
 "description":"insert a block into the plate",
 "@type":[
 "SmA:Skill_Insert",
 "Ingredient"
],
 "hasInputData":{
 "type":{
 "argument1": {
 "name": "Position",
 "type": "number"
 },
 "argument2": {
 "name": "BuildingBlockTypeID",
 "type": "number"
 },
 "argument3": {
 "name": "Orientation",
 "type": "number"
 },
 "argument4": {
 "name": "RFID",
 "type": "number"
 },
 "argument5": {
 "name": "CurrentConfiguration_BuildingBlockTypeId",
 "type": "number"
 },
 "argument6": {
 "name": "CurrentConfiguration_Orientation",
 "type": "number"
 }
 }
 },
 "hasOutputData":{
 "type":{
 "argument1": {
 "name": "ErrorID",
 "type": "number"
 }
 }
 },
 "RecipeModel:operation":"RecipeModel:Update",
 "interactsWith":[

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

90

 {
 "hasSerialNumber": "4",
 "@id": "fcfca6fc0f1c1e1f",
 "operation":"Update"
 }
]
 }
 },
 {
 "insert":{
 "@id":"fcfca6fc0f1c1e1f",
 "NLQ": "find a skill to insert a block into the plate",
 "description":"insert a block into the plate",
 "@type":[
 "SmA:Skill_Insert",
 "Ingredient"
],
 "hasInputData":{
 "type":{
 "argument1": {
 "name": "Position",
 "type": "number"
 },
 "argument2": {
 "name": "BuildingBlockTypeID",
 "type": "number"
 },
 "argument3": {
 "name": "Orientation",
 "type": "number"
 },
 "argument4": {
 "name": "RFID",
 "type": "number"
 },
 "argument5": {
 "name": "CurrentConfiguration_BuildingBlockTypeId",
 "type": "number"
 },
 "argument6": {
 "name": "CurrentConfiguration_Orientation",
 "type": "number"
 }
 }
 },
 "hasOutputData":{
 "type":{
 "argument1": {
 "name": "ErrorID",
 "type": "number"
 }
 }
 },
 "RecipeModel:operation":"RecipeModel:Update",
 "interactsWith":[
 {
 "hasSerialNumber": "5",

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

91

 "@id": "g4493a89cfd4a063",
 "operation":"Update"
 }
]
 }
 },
 {
 "Unload":{
 "@id":"g4493a89cfd4a063",
 "NLQ": "find a skill to unload the plate from an assembly module",
 "description":"load plate to a module",
 "@type":[
 "SmA:kill_Load_Unload",
 "Ingredient"
],
 "hasInputData":{
 "type":{
 "argument1": {
 "name": "sourcePos",
 "type": "number"
 },
 "argument2": {
 "name": "DestinationPos",
 "type": "number"
 },
 "argument3": {
 "name": "RFID",
 "type": "number"
 }
 }
 },
 "hasOutputData":{
 "type":{
 "argument1": {
 "name": "ErrorID",
 "type": "number"
 }
 }
 },
 "operation":"Update"
 }
 }]}

Figure 7-1: Sample Recipe snippet for smart factory application in UC4

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

92

8 ANNEX II – PERFORMANCE AND SCALABILITY EVALUATION OF THE

MAPPING TEMPLATE COMPONENT

This annex provides a detailed description of the quantitative assessment of the
performance and scalability of the mapping-template component reported in Section
3.2.1.3.

All the diagrams presented in this section report the average metrics over multiple test
repetitions on a logarithmic scale (log10).

8.1 GTFS MADRID BENCHMARK

For an initial assessment of the performance and scalability of the mapping-template
tool, we utilized the GTFS-Madrid-Bench67 following the methodology and the RML
mappings established in the evaluation by Arenas et al. [Arenas21]. The benchmark
includes a variety of (R2)RML mappings and a generator for producing input data
sources in different formats and sizes. We focused on three data formats (CSV, XML, and
JSON) and tested three scaling factors (1, 10, and 100), comparing the mapping-
template tool to the morph-kgc v2.3.168 RML processors. The configuration details and
the raw data results are made available online69.

Morph-kgc was chosen for evaluation due to its state-of-the-art performance and
scalability with respect to other RML mapping processors [Arenas22]. We executed the
morph-kgc processor in both parallel (morph-kgc-p) and sequential (morph-kgc) modes.
We generated a set of templates using MTL that followed the same mapping rules
defined for the RML mappings, but that could be executed directly via the mapping-
template tool. To evaluate the impact of join conditions on the mapping-template, we
defined two types of mapping templates: (i) the first one performs join operations
between data frames (mapping-template) (ii) the second one leverages the generation
of corresponding IRIs to obtain the same output without performing join operations
(mapping-template-nj).

For the evaluation, we measured execution time (with a timeout of 24 hours) and the
maximum memory usage (with each processor running inside a Docker container limited
to 64GB memory). The experiments were conducted on a virtual machine equipped with
12 Intel(R) Xeon(R) E-2136 CPUs running at 3.30GHz, along with 128 GB RAM and SSD

67 https://github.com/oeg-upm/gtfs-bench
68 https://github.com/morph-kgc/morph-kgc/releases/tag/2.3.1
69 https://github.com/cefriel/mapping-template-eval/tree/main/engines-compare

https://github.com/oeg-upm/gtfs-bench
https://github.com/morph-kgc/morph-kgc/releases/tag/2.3.1
https://github.com/cefriel/mapping-template-eval/tree/main/engines-compare

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

93

storage. Figure 8-1 illustrates the metrics recorded for each configuration, with each test
repeated three times.

Figure 8-1: Evaluation on the GTFS Madrid Benchmark between mapping-template and morph-kgc

The findings indicate that the mapping-template tool executes the task with reduced
execution time while demonstrating comparable memory consumption across all three
data formats. In contrast, the morph-kgc with parallel processing encountered memory
issues when handling input data at scale 100. Notably, while adding join conditions
typically impacts the performance of processors using RML, the metrics for the mapping-
template tool showed minimal variation during the evaluation.
This outcome can be attributed to the tool's advantage from the effective and optimized
execution of templates offered by the Velocity Engine. However, as highlighted by the
test cases presented in the following paragraphs, the execution time comes at the cost
of higher memory consumption, and this may be problematic when increasing the input
size or in the presence of constraints on memory resources available.
Additionally, it's worth noting that the MTL enables users to refine the mapping rules to
fit specific mapping scenarios, e.g., minimizing the number of data frames extracted
from the input sources. While fully declarative mapping languages aim at introducing
these optimisations without explicit modifications to the mapping rules, not all the
optimisations may be automatically inferred by an engine by only relying on the
mapping rules, i.e., without knowing the actual data on which the set of mapping rules
is applied. In these contexts, the flexibility enabled by MTL can lead to great advantages
in terms of performance. Currently, an extension of RML is being investigated to allow
users to specify data access methods for improved performance declaratively
[Vleeschauwer24].

Lastly, it's important to mention that although the inputs and mappings used in the
evaluation did not produce duplicate triples, the execution time for morph-kgc could
still be affected due to its inherent implementation that ensures the elimination of
duplicate triples before output serialization.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

94

8.2 KNOWLEDGE GRAPH CONSTRUCTION CHALLENGE

To further examine and compare the performance of the mapping-template tool against
other mapping processors, we participated in track 2 of the Knowledge Graph
Construction Challenge 2024 70 . This track focused on performance comparison by
requiring each tool to convert input data sources to RDF according to specific RML
mapping rules. The first part of the challenge utilized the GTFS-Madrid-Bench to
evaluate the tools' behaviour with varying scales of the same data sources (1, 10, 100,
1000) and incorporated diverse combinations of data source types (tabular, files,
nested, mixed). The second phase focused on various parameters that could influence
the mapping process, establishing different test cases by altering the number of data
records, properties, duplicate values, empty values, mapping rules
(PredicateObjectMaps), as well as join operations. Although different types of joins were
tested, we do not report those results here as no significant differences were observed.
The organizers provided a tool for reproducible execution of the challenge, along with
metric collection and the resulting outcomes. Each participant received the same virtual
machine with the following specifications: 4 vCPUs, 16 GB RAM, 130 GB HD, running
Ubuntu OS. The complete testing specifications and the set of raw results from each tool
are available on Zenodo71.

We took part in the challenge before the introduction of direct support for RML
mappings in the mapping-template tool. Consequently, we manually created an MTL
template for a limited set of test cases to carry out the same knowledge graph
construction task. We did not explore test cases that varied the number of joins and
mapping rules due to the need to manually adapt numerous mapping files. Despite the
penalty for executing a limited set of test cases, the mapping-template tool secured
third place overall in the challenge. Notably, the mapping-template tool excelled in
execution time and CPU usage, though it did not perform as well in terms of memory
consumption.

To achieve a comprehensive performance comparison, we supplemented the challenge
results by executing the same test cases with the updated version of the mapping-
template, providing the RML mapping files directly as input. The evaluation
configuration and raw results are available online72. In the following sections, we will
report and discuss the challenge results alongside the ones recorded afterwards
executing the mapping-template with RML mappings (referred to as mapping-template-
rml in the figures). Each test was conducted five times, and we present the results for
the other three mapping engines involved in both parts of track 2: FlexRML 73 ,
RPT/Sansa74, and RML-Streamer75 with RML-view-to-CSV [Vleeschauwer24].

70 https://kg-construct.github.io/workshop/2024/challenge.html
71 https://zenodo.org/records/11577087
72 https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024
73 https://github.com/wintechis/flex-rml
74 https://github.com/Scaseco/R2-RML-Toolkit
75 https://github.com/RMLio/RMLStreamer

https://kg-construct.github.io/workshop/2024/challenge.html
https://zenodo.org/records/11577087
https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024
https://github.com/wintechis/flex-rml
https://github.com/Scaseco/R2-RML-Toolkit
https://github.com/RMLio/RMLStreamer

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

95

Figure 8-2: Evaluation on the KGCW Challenge for GTFS-scale and GTFS-heterogeneity

Figure 8-2 shows the results for the first part related to the GTFS-Madrid-Bench. The
performance of mapping-template-rml is not directly comparable to that of the
mapping-template when executing MTL mappings. This disparity arises from the
necessity to incorporate additional checks for accurate output generation in the generic
case of a translation from RML to MTL. In this case, several optimisations are not applied,
as done instead during the manual definition of templates.
In the heterogeneity tests, mapping-template-rml failed to run three tests due to the
use of a JSON file for the Shapes file, which led to out-of-memory errors due to the
challenge of optimizing multiple JSONPath accesses to the input file.

Figure 8-3: Comparison on GTFS-Scale 1 to evaluate the overhead of RML compilation in the mapping-template

Figure 8-3 illustrate the GTFS-Madrid-Bench results for scale-1, incorporating metrics
from a case (mapping-template-rm-mtl) in which an MTL template generated from RML

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

96

is executed directly with the tool. This case eliminates the translation overhead that is
usually introduced when providing RML mappings directly to the mapping-template
tool. This diagram indicates that performance differences cannot be solely attributed to
this overhead, even with small input files.

Figure 8-4 and Figure 8-5 detail the results for all other test cases influenced by different
parameters affecting knowledge graph construction. The previously mentioned trends
are observable across these test cases. Overall, it is evident that the mapping-template
delivers good execution times, although it struggles with memory optimization.
Furthermore, the tool performs better with smaller input sizes. Results from executing
manually defined MTL templates directly highlight the benefits of tailoring mapping
templates to specific mapping scenarios.

Figure 8-4: Evaluation on the KGCW Challenge for mappings, records, join parameters

Figure 8-5: Evaluation on the KGCW Challenge for empty values, duplicates and properties parameters

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

97

9 ANNEX III – EVALUATION OF UC2 DATAOPS PIPELINE ON

DIFFERENT DEPLOYMENT TEMPLATES

This annex provides visualisations to compare the behaviour of different deployments
of the DataOps pipeline discussed in the evaluation in Section 3.3.1.

9.1 CONVERSION TIME AND INPUT SIZE

For the evaluation of conversion time and input size, we visualize the metrics trend over
time in the reported graphs. The metrics are normalized between 0 and 1 to show the
overall trends.
It can be noticed that the input size varies continuously and there is no specific trend.
Nevertheless, the average value is, in all cases, a medium value between maximum and
minimum.
On the conversion time, Temurin recorded values with lower variance but greater spikes
not correlated with the input size. GraalVM recorded more stable values on average.

Figure 9-1: Comparison of conversion time and input size over time for Temurin and GraalVM

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

98

Native images recorded higher variance in the conversion time despite keeping the
average much lower than the maximum values registered.

Figure 9-2: Comparison of conversion time and input size over time for Native

9.2 MEMORY AND CPU UTILISATION

These visualizations comprehensively compare memory and CPU consumption across
the different Docker images.
The following comparisons of CPU/Memory utilization are presented:

▪ Temurin – GraalVM – GraalVM-Native
▪ Spring-Temurin – Spring-GraalVM – Spring-GraalVM-Native
▪ Temurin – Spring-Temurin
▪ GraalVM – Spring-GraalVM
▪ Native – Spring-Native

9.2.1 Temurin – GraalVM – GraalVM-Native

The test results indicate that for Docker images using the core version, CPU performance
for Temurin and GraalVM is substantially similar and slightly better compared to the
Native version. Additionally, all of them exhibit an initial spike. Regarding memory,
Temurin and GraalVM images also have the same performance. However, there is a
noticeable improvement in the Native version for the memory usage with respect to
the other images.

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

99

9.2.2 Spring-Temurin – Spring-GraalVM – Spring-GraalVM-Native

As shown in the graphs below, the CPU performance of the three tested Docker Spring
images is substantially similar, and all exhibit an initial spike that is much more
pronounced for the core version than the native version. In terms of relative Memory
comparison, however, the Spring GraalVM version shows slightly better performance
compared to the core version. It is, however, very evident that the native version
exhibits a much lower memory usage compared to the other two images.

Figure 9-3: CPU Comparison of Temurin, GraalVM and Native

Figure 9-4: Memory Comparison of Temurin, GraalVM and Native

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

100

Figure 9-6: Memory Comparison of Spring Temurin, Spring GraalVM and Spring Native images

9.2.3 Temurin – Spring-Temurin

The results of this comparison demonstrate that no significant differences were found
between the core and spring versions of the Temurin image. The core version exhibits
slightly better performance in terms of memory usage, while the spring version shows
slightly better behaviour in terms of CPU usage, although it exhibits a much more
pronounced initial spike compared to the core version.

Figure 9-5: CPU Comparison of Spring Temurin, Spring GraalVM and Spring Native images

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

101

9.2.4 GraalVM – Spring-GraalVM

In this test, as with the previous one, no substantial differences are highlighted between
the two tested Docker images. However, also in this case, a slightly better performance
in terms of memory is noted for the core version and a slightly better behaviour in terms
of CPU for the Spring version, which also in this case shows a more pronounced initial
spike compared to the core version.

Figure 9-7: CPU Comparison of Temurin and Spring Temurin

Figure 9-8: Memory Comparison of Temurin and Spring Temurin

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

102

Figure 9-10: Memory Comparison GraalVM and Spring GraalVM

9.2.5 Native – Spring-Native

Regarding the comparison of native versions, as can be easily seen in the graphs below,
the native spring image shows better performance in terms of both memory and CPU
compared to the native core version. However, as with all other cases, even for the
native image, the spring version experiences a much higher initial CPU spike compared
to the native core version.

Figure 9-9: CPU Comparison GraalVM and Spring GraalVM

D3.2 First implementation of tools for CSI SmartEdge GA 101092908

103

Figure 9-11: CPU Comparison Native and Spring Native Figure 9-12: Memory comparison Native and Spring Native

