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EXECUTIVE SUMMARY 
 
Deliverable D3.2 details the final design of the tools for Continuous Semantic Integration 
(CSI) and their first implementation defined by the SmartEdge project within WP3. 
Starting from the design activities reported in D3.1 and the final list of requirements 
defined in D2.2, this deliverable identifies and describes a set of artefacts to enable the 
overall concept of CSI. 
Task 3.1 defines interoperable semantic models to describe the nodes available and 
their capabilities as the first step in enabling a specific use case when adopting the 
SmartEdge solutions. Furthermore, a shared repository is implemented for storing, 
retrieving, and querying such descriptions. To enable collaboration among 
heterogeneous nodes that may join a swarm, a solution is proposed to allow for 
standardized communication interfaces among them.  
However, interoperability of interfaces is not enough since nodes may rely on different 
information models and data formats that should be harmonized. Task 3.2 addresses 
these aspects by providing a DataOps toolbox to define mediated data exchanges for 
semantic interoperability. The flexible execution of data exchanges among nodes is also 
supported, considering heterogeneous deployment requirements and the potential 
interplay between nodes on Cloud and Edge. Finally, the performance and scalability of 
mediated data exchanges are addressed. 
Task 3.3., building on the described solutions, provides a dedicated user interface to 
enable the low-code definition of swarm applications for edge intelligence. Additionally, 
a set of artefacts is responsible for identifying and orchestrating relevant nodes in order 
to compose a swarm able to execute the defined applications. 
The deliverable describes the first release of the artefacts designed and implemented 
by WP3 to support the first lab tests and validation phase within WP6, considering the 
SmartEdge use cases. Deliverable D6.1 will fully report and discuss the validation 
planning, the results obtained in the first iteration and the fulfilment status for 
requirements associated with WP3 artefacts. 
This document will be updated in month 30 in deliverable D3.3 based on the final 
implementation of the tools for CSI that will consider the feedback from WP6 activities. 
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1 INTRODUCTION 
 
Deliverable 3.2 provides the final design and first implementation of tools for 
Continuous Semantic Integration (CSI) in the SmartEdge project. In this deliverable we 
report the status of the work in Work Package 3 (WP3), which aims to provide CSI via 
three tasks: (i) edge semantics with standardized semantic interfaces for IoT devices; (ii) 
a DataOps toolbox for continuous semantic integration, and (iii) a declarative and low-
code approach for creation and orchestration of swarm apps based on Recipes. To this 
goal, we design and implement concepts for these three tasks considering the 
requirements from SmartEdge use cases. The final design is based on its first iteration 
described in deliverable D3.1 and the final list of requirements reported in D2.2. This 
deliverable also discusses the first implementation of tools for Continuous Semantic 
Integration to support the first lab tests and validation phase within WP6. D6.1 provides 
a validation and report on how the developments described in this deliverable match 
the SmartEdge requirements defined in D2.2 and the complete set of SmartEdge KPIs. 
 
The following introduction explains the concept of Continuous Semantic Integration 
(CSI) defined and implemented by WP3 in SmartEdge. We present the different tasks 
that are required to enable CSI and the associated artefacts that SmartEdge implements 
to support it. Moreover, we discuss the mapping between KPIs and artefacts and the 
relations between WP3 and other technical work packages. Finally, we outline the 
structure of the deliverable. 

1.1 CONCEPT OF CONTINUOUS SEMANTIC INTEGRATION 
 

The Internet of Things (IoT) together with edge intelligence brings several benefits 
across various industries and everyday life. These technologies enable the seamless flow 
of data between devices and systems, leading to improved efficiency and productivity. 
They can lead to cost savings by optimizing operations. IoT devices generate a vast 
amount of data. This data can be analysed to gain valuable insights and lead to better 
decision-making systems. But all these promises come with a hypothesis that the data 
generated with IoT devices can be easily consumed by intelligent applications. This is 
not always true, and very often it is a challenge. The reason is that IoT devices have 
different capabilities, communicate via different protocols, exchange information in 
different formats, and may change over time. For all these reasons, it is not an easy task 
to integrate data generated by IoT devices and make them consumable for application 
developers. Figure 1.1 introduces the concept of Continuous Semantic Integration in the 
SmartEdge project. It is a building block between IoT devices and added-value apps. 
Continuous Semantic Integration (CSI) provides access to horizontally and vertically 
integrated data via standardized communication interfaces. It also provides semantics 
about data, devices, and applications, and runs on the edge. For example, capabilities of 
devices are described in a machine-interpretable way with standardized vocabularies. 
Devices’ data is also semantically described and accessible via unified and standardized 
interfaces. CSI is a prerequisite for the low-code application development in a way that 
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it facilitates semantic discovery of device skills and provides matchmaking of skills with 
application requirements. It also integrates data with different formats and semantics, 
and provides a uniform and standardized access to it. With CSI, the SmartEdge project 
aims to enable an easy development of low-code applications. 

 
Figure 1-1: Continuous Semantic Integration for SmartEdge 

The concept of CSI introduces several innovative contributions to the SmartEdge project. 
Semantic models in CSI formalize key concepts like Swarm Node, Device, Capability, and 
Recipe, among others. Through CSI, Recipes are introduced as a practical means to 
specify, develop, and deploy low-code swarm applications. Built on standardized models 
and interfaces, CSI promotes interoperability, automates low-code toolchains, and 
enhances the reusability of Recipe-based applications. CSI also incorporates the 
DataOps toolbox to enable a declarative specification of pipelines to guarantee semantic 
interoperability between swarm or device nodes. It supports pipeline deployment 
across diverse environments and provides a low-code tool for pipeline definition. 
Additionally, CSI integrates a Knowledge Graph Repository, a specialized semantic 
repository designed for storing, retrieving, and managing knowledge artefacts. This 
repository interfaces with two key standards: W3C Web of Things1 and OPC UA2, and 
stores data in RDF format. This format allows for the integration of multiple semantic 
vocabularies, supporting a range of SmartEdge use cases. Crucially, it enables an 
effective application of large language models (LLMs) on this data, simplifying the use of 
semantic models in low-code application development and enhancing the usability of 
the SmartEdge low-code toolchain. By addressing complexity and usability, common 
barriers to the adoption of semantic technologies, CSI tackles these challenges 
effectively. 

The following sections of this document break down the functionalities of CSI into a set 
of SmartEdge artefacts, each addressing a specific function within CSI. We also cover the 
design and initial implementation of these artefacts.  

 
11 https://www.w3.org/WoT/  
2 https://opcfoundation.org/about/opc-technologies/opc-ua/  

https://www.w3.org/WoT/
https://opcfoundation.org/about/opc-technologies/opc-ua/
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1.2 CONTINUOUS SEMANTIC INTEGRATION IN SMARTEDGE 
 
This section provides an overview of the designed integration of WP3 artefacts for 
enabling Continuous Semantic Integration for a set of nodes that are used to compose 
a swarm and execute a swarm intelligence application. The diagram in Figure 1-2 
summarises the relation among the different artefacts and we discuss their integration 
considering the different tasks required to adopt the artefacts for a certain use case. 
Each artefact is described in detail within a dedicated section in the rest of the 
deliverable. 
 

 
Figure 1-2: Continuous Semantic Integration enabled by SmartEdge WP3 artefacts 

 
Interoperable description of nodes and their capabilities 
The first task is based on an interoperable description of the nodes (devices) available 
for a certain use case, i.e., the list of nodes that can be selected to form a swarm and 
execute a swarm intelligence app. The description of the nodes should be compliant 
with the SmartEdge Semantic Models (A3.1) and stored within the Knowledge Graph 
Repository (A3.3). The Knowledge Graph Repository provides support for both W3C 
Thing Descriptions and OPC UA Nodesets. 
 
Enable standardized communication interfaces for relevant nodes 
The second task is associated with the need for enabling communications among nodes 
leveraging different protocols. Standard communication interfaces can be enabled with 
the support of the artefact Middleware with Standardized Interfaces (A3.2). Moreover, 
the Semantic Media Service (A3.11) is defined to support the efficient exchanges of data 
among nodes that do not require the intermediation of the orchestrator. 
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Define mediated data exchanges ensuring semantic interoperability  
The DataOps tool provides a set of modular and configurable components (A3.5) that 
can be used to define a pipeline for mediated data exchanges among nodes in the 
swarm. Such a pipeline supports a semantic conversion process and guarantees not only 
the exchange of data among nodes, but also the required schema and data 
transformations for semantic interoperability, e.g., considering the semantics a specific 
domain ontology (A3.1).  These pipelines may also support the static management of 
nodes, e.g., the conversion of OPC-UA nodes description for their insertion/retrieval 
from the Knowledge Graph Repository (A3.3). Moreover, they can support the execution 
of swarm intelligence applications by supporting the communication between the 
orchestrator and specific nodes in the swarm. 
The definition of pipelines can be simplified by low-code approaches via artefact Low-
code DataOps Configuration (A3.7). 

 
Support execution of mediated data exchanges between nodes on Cloud and Edge 
The execution of Data Ops pipeline should be flexible w.r.t the deployment environment 
of the different nodes. The artefact DataOps Deployment Templates (A3.6) supports the 
execution of pipelines in different deployment environments to enable the 
communication and data management across different types of nodes. 

 
Define interoperable Recipes for swarm intelligence apps 
In SmartEdge, a Recipe serves as an application template. It formally outlines the 
application requirements based on the Recipe Model (A3.1). Additionally, it specifies the 
steps that nodes (devices) must follow to implement a swarm application. These steps, 
along with the application logic, can be defined using a low-code approach (A3.4). As an 
application template, a Recipe can be reused to create multiple applications. Therefore, 
CSI facilitates the discovery and retrieval of existing Recipes within the low-code 
environment (A3.8). Once a suitable Recipe is identified, then the low code developer 
can customize it and finish the design of the application. 

 
Orchestrate interoperable Recipes on a swarm 
Semantic Recipes in SmartEdge, described using the models from A3.1, can be used as 
the basis for low code developers to build their applications, using artefact 3.8. In order 
to match the capabilities required by the semantic Recipes, Artefact A3.9 provides the 
ability to match them with the affordances of available nodes in the swarm. Thanks to 
the matching features of A3.9, then specific nodes can be bound to the runtime 
environment, to be later enacted and orchestrated through artefact A3.10. 

1.3 CONTINUOUS SEMANTIC INTEGRATION ARTEFACTS 
 
Table 1.1 describes the complete list of artefacts representing Continuous Semantic 
Integration tools developed by SmartEdge. The table summarizes the role of the 
artefact, where it is described within the document and the current implementation 
status. 
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Table 1-1: Tools for Continuous Semantic Integration. 

ID Component Lead Section Description Implementation 
Status 

A3.1 SmartEdge 
Semantic 
Models 

SAG 2.1.1, 
2.1.2, 
2.2.1, 
2.2.2 

Common data structures to 
represent the data from diverse 
machines, applications, and 
swarms. 

Available for the 
first release. 
Second release 
planned. 

A3.2 Middleware 
with 
Standardized 
Interfaces 

SAG 2.1.3, 
2.2.3 

Middleware provides 
standardized data access to the 
devices’ data. 

Available for the 
first release. 
Second release 
planned. 

A3.3 Knowledge 
Graph 
Repository 

SAG 2.1.4, 
2.2.4, 
3.3.2  

Specialized semantic repository 
designed for the storage, 
retrieval, and management of 
standardized knowledge artefacts 

Available for the 
first release. 
Second release 
planned. 

A3.4 Mendix 
Toolchain 

SAG 2.1.5, 
2.2.5 

A programming environment to 
create Recipes in a low-code 
manner. 

Available for the 
first release. 
Second release 
planned. 

A3.5 DataOps 
Pipeline 
Components 

CEF 3.1.1, 
3.2.1 

Set of components to define 
DataOps pipelines and reusable 
pipelines defined for SmartEdge 
use cases. 

Available for the 
first release. 
Second release 
planned. 

A3.6 DataOps 
Deployment 
Templates 

CEF 3.1.2, 
3.2.2 

Templates for DataOps pipeline 
deployment on Cloud and Edge 
environments. 

Available for the 
first release. 
Second release 
planned. 

A3.7 Low-code 
DataOps 
Configuration 

CEF 3.1.3, 
3.2.3  

Artefacts and tools to support the 
low-code definition of DataOps 
pipelines. 

Available for the 
first release. 
Second release 
planned. 

A3.8 Semantic 
Recipe 
Integration 
with Mendix 

HESSO 4.1.1, 
4.2.1 

Integration of semantic Recipe 
directory with Mendix for 
discovery and retrieval of existing 
Recipes, related to specific swarm 
tasks. 

Available in the 
second release, 
currently being 
implemented.   

A3.9 Recipe-TD 
Matcher 

HESSO 4.1.2, 
4.2.2 

Implementation of matching of 
Recipes and thing descriptions 
according to TD affordances and 
swarm Recipe specifications  

Available in the 
second release, 
currently being 
implemented.   

A3.10 Mendix 
Orchestrator 

HESSO 4.1.3, 
4.2.3 

Orchestrator of Mendix flows 
following a given Recipe and a 
given set of swarm nodes 
previously matched  

Available in the 
second release, 
currently being 
implemented.   

A3.11 Semantic 
Media Service 

DELL 2.1.5, 
2.2.5 

Artefact to stream semantic 
graphs between nodes in the 
swarm, which will facilitate a 
shared environmental context. 

Available in the 
second release, 
currently being 
implemented.   
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1.4 MAPPING KPIS AND ARTEFACTS 
 
KPIs relevant for WP3 are shown in Table 1-2 and mapped with relevant artefacts 
designed and implemented to address them. The progress towards KPIs for the first 
release of the CSI tools is summarized in this table by referencing specific sections of the 
deliverable. 
     

Table 1-2: WP3 Key Performance Indicators for CSI tools and related artefacts. 

KPI 
number 

Description Related artefacts 

K2.1 Semantic integration should be provided for at 
least 4 brownfield protocols and more than 3 
green field devices. 

A3.2 

Status 
Update 

Semantic integration of communication protocols has been analyzed in 
Section 3.4, and initially designed in Section 3.5 of D3.1. The final design 
has been provided as the middleware with Standardized Semantic 
Interfaces, see Section 2.1.3. Initially, the middleware with Standardized 
Semantic Interfaces would support four brownfield protocols and more 
than three greenfield devices. We proceeded with the design and 
implementation for greenfield protocol support as planned (Section 
2.2.3). However, the use case requirement analysis indicated that 
supporting brownfield protocols was unnecessary. Instead, in use cases 
UC1 and UC4, it became clear that the SmartEdge middleware should also 
extend protocol integration within a virtual environment. As a result, our 
design for the middleware with Standardized Semantic Interfaces now 
includes support for two additional protocol integrations (OPC UA and 
MQTT3) for Unity4, the preferred virtual environment in SmartEdge. 

K2.2 Message conversion performances increased 
by at least 80% wrt. the baseline described in 
[Scrocca21] (140ms conversion time with 
50KBytes XML payloads) 

A3.5, A3.6 

Status 
Update 

Analysis of existing processors for declarative mapping languages to 
identify relevant components and operations affecting the performance 
of the semantic conversion process (cf. design of the mapping processor 
for a DataOps pipeline reported in D3.1). Enhancement of the Mapping 
Template tool to support the optimized execution of declarative mapping 
rules for message conversion (both lifting and lowering) in a DataOps 
pipeline (cf. Section 3.2.1). Performance tests were performed to compare 
semantic conversion with the Mapping Template tool and existing 
processors for knowledge graph construction (cf. Section 3.2.1.3). Testing 
was performed using the DataOps pipeline for traffic data from UC2 (c.f.  
Section 3.3.1), and the JSON stream payloads (3Kb) were converted to RDF 
in less than 4 milliseconds on average. Further tests will be executed with 
bigger payloads for the second release. 

 
3 https://mqtt.org/  
4 https://unity.com/  

https://mqtt.org/
https://unity.com/
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K2.3 Semantic integration scalability (in terms of 
maximum concurrent requests and data 
velocity) increased by at least 50% wrt. the 
baseline described in [Scrocca21] (100 
requests per second with XML payloads of 
around 50 Kbytes on commodity hardware) on 
a single converter instance (T3.2) 

A3.5, A3.6 

Status 
Update 

Analysis of different deployment options for a DataOps pipeline to 
minimise resource usage of a single instance and enable flexible scalability 
for increasing demand (cf. Section 3.2.2). Testing was performed using the 
DataOps pipeline for traffic data from UC2 (c.f.  Section 3.3.1), and the 
JSON stream (10 req/s, 3Kb) was converted without dropping requests. 
The average conversion time of 4ms should enable processing of 250 
req/s. Further tests will be executed with bigger payloads and increased 
number of concurrent requests for the second release. 

K2.4 Reduced complexity and configuration time 
(at least 70%) of swarm intelligence Apps 
through the automatic instantiation and 
orchestration of template-based 
specifications. 

A3.8, A3.9, A3.10 

Status 
Update 

Simplification of the configuration process is part of the facilitated use of 
semantic Recipes, matching and orchestration, as described in Section 4. 
These metrics will be evaluated in the context of A3.10 orchestration with 
the Mendix runtime, expected to be completed for the second release. 

1.5 RELATIONS TO WP4 AND WP5 
 
In this section, we discuss the designed interactions between the artefacts for 
Continuous Semantic Integration (CSI), developed by WP3, and the ones developed 
within WP4 and WP5. Additional details on the referred artefacts can be found in D4.2 
and D5.2 
 
The SmartEdge WP4 focuses on the networking aspects of a swarm and leverages the 
semantic representations defined by WP3 (A3.1) to exchange interoperable 
representations of the information on nodes composing a swarm. Additionally, the Task 
Orchestrator (A5.3.2) uses both the Knowledge Graph Repository (A3.3) and the 
Distributed Database for Network Information – Address Resolution Table (A4.5) to 
discover the available swarm nodes together with their semantic description and IP 
addresses. This information is then provided to the Swarm Coordinator (A4.2) to 
establish the communication to the Node Managers (A4.3) to request the designated 
nodes to join the swarm. 
 
To ensure interoperability between the developments in WP3 and WP5, the Mendix 
toolchain from WP3 will be enhanced to orchestrate nodes within Recipes managed by 
the SmartEdge runtime engine, developed in WP5. The Mendix toolchain will 
communicate with the WP5 Orchestrator via Zenoh, sending tasks to the orchestrator, 
subscribing to retrieve execution results, and passing the data to subsequent Recipe 
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steps. This integration will enable seamless interaction between SmartEdge nodes, 
regardless of whether they are controlled by the SmartEdge runtime (WP5) or the 
Mendix runtime (WP3). 
 
Within WP5, the DataOps toolbox is also used as part of A5.1 to implement the Data 
Stream Fusion artefact (A5.1.4). Indeed, a set of DataOps pipelines can be customized 
to process heterogeneous data sources and integrate them according to a shared 
semantic representation. 

1.6 STRUCTURE OF THE DOCUMENT 
 
The document has the following sections. Section 2 provides the final design and the 
first release implementation for Standardized Semantic Interfaces in SmartEdge. This 
work is primarily the subject of Task 3.1. Section 3 outlines the final design and first 
release of the DataOps toolbox in SmartEdge, which is in the scope of Task 3.2. Section 
4 reports the current contribution in Task 3.3 on a low-code approach for orchestration 
of swarm edge applications; and finally, Section 5 closes the document, highlighting 
some of the conclusions found and discussing the next steps in WP3.  
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2 STANDARDIZED SEMANTIC INTERFACES FOR SMARTEDGE 
 
Standardized Semantic Interfaces are fundamental in SmartEdge, providing access to 
integrated data and metadata through standardized communication interfaces. This 
section discusses the final design and initial implementation of the artefacts dedicated 
to these interfaces, as part of Task 3.1 of SmartEdge WP3. Specifically, these artefacts 
include: 

▪ A3.1: SmartEdge Semantic Models 
▪ A3.2: Middleware with Standardized Interfaces 
▪ A3.3: Knowledge Graph Repository 
▪ A3.4: Mendix Toolchain 

 
A3.1 offers common data structures to represent data from various machines, 
applications, and swarms. This work is based on two widely adopted standards: W3C 
Web of Things and OPC Unified Architecture (OPC UA). The main tasks, as defined by 
D2.1 and refined in D2.2, are to enable easy low-code application development, 
facilitating formal description of nodes (devices), as well as semantic discovery of device 
skills and matching these skills with application requirements. This functionality is 
applied uniformly across different use case domains, regardless of the standards used. 
A3.1 also formalizes key concepts in SmartEdge, such as Swarm Node, Device, Capability, 
and Recipe. 
A3.2 and A3.3 are infrastructure artefacts that enhance the functionalities of other 
artefacts. A3.2 provides access to data, while A3.3 offers access to metadata (semantics) 
from any SmartEdge node or device via unified and standardized interfaces, supporting 
easy low-code application development. 
A3.4 is a toolchain that relies on A3.1, A3.2, and A3.3 to facilitate low-code application 
development. Additionally, this artefact integrates an interface for large language 
models (LLMs), simplifying the use of semantic models in low-code application 
development and enhancing the usability of the SmartEdge low-code toolchain. 

2.1 FINAL DESIGN 

2.1.1 Final Design of SmartEdge Schema (A3.1) 
 
This section provides an overview of all SmartEdge semantic models and then briefly 
mentions the final design of SmartEdge schema. SmartEdge semantic models are the 
artefacts that provide common data structures to represent the data from diverse 
machines, applications, and swarms etc. Existing standards such as W3C Web of Things, 
OPC UA, and existing domain models are reused to create SmartEdge semantic models. 
Reusing the standards provides harmonized interfaces for diverse machines and use 
cases and enables interoperability. The project develops several semantic model 
artefacts such as:  

▪ semantic models for representing data from diverse nodes using Web of Things 
Thing Description and OPC UA standard. The node semantic models describe the 
capabilities offered by a node, its static and dynamic attributes required by the 
applications;  
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▪ semantic models for representing SmartEdge applications using Recipe model. 
The Recipe model describes the application requirements such as capabilities on 
the nodes required to execute the application, the required static, and dynamic 
attributes of the nodes;  

▪ semantic models for representing the runtime attributes of a swarm using 
SmartEdge Schema will be a new semantic model that will be developed in the 
project. SmartEdge schema describes a swarm in runtime. It describes swarm 
attributes such as nodes involved in the swarm currently, Recipe that is being 
executed by the swarm, status of swarm execution etc.  

 
Figure 2-1 gives the overview of semantic models in SmartEdge project. Together, all the 
semantic models provide common data structures from devices to applications.  
 

 
Figure 2-1: Semantic models in SmartEdge 

 
The final design of SmartEdge schema is presented in D3.1 section 3.1. The details about 
the first implementation of SmartEdge schema are presented in this deliverable in 
section 17. 
 

2.1.2 Final Design of Recipe model (A3.1) 
 

The Recipe model defined in D3.1 is used to define applications in SmartEdge use cases. 
A Recipe is basically a semantic definition of an application template. It defines the 
requirements of an application such as the skills / capabilities a node needs in order to 
execute the applications and interaction between them. This information is needed in a 
Recipe to discover the right nodes to execute it. The interaction is defined at the higher 
abstraction in the Recipe model. It just defines which capabilities interact with each 
other, however the business logic during the interactions is out of scope of Recipe 
semantic definition. This higher abstraction makes the Recipe model flexible and 
enables it to be useable in different domains and different use cases. For example, 
Recipe model can be used to model application in SmartEdge UC1 which is based on 
W3C WoT standard and UC4 which is based on OPC UA standard. The example Recipes 
are presented in the first implementation of Recipe model in section 18. 
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The model defined in D3.1 is extended further to make it usable with AI technologies 
such as Large Language Models (LLMs). The changes are depicted in Figure 2-2. 
 
 

 
Figure 2-2: Recipe model extended with NLQ 

 
Two new terms are added to the model: Serial Number and NLQ (Natural Language 
Query). 
 
An application defined using a Recipe can have multiple interactions between different 
nodes. The Serial Number attribute uniquely identifies an interaction between nodes. 
 
A capability in a Recipe specifies the skills a node should have in order run the application 
defined by the Recipe. The capability is formally represented in RDF format in a Recipe. 
However, now we also added a new attribute to a capability called NLQ, which can be 
used to describe the capability requirements in natural language format that can be 
easily used by an LLM. Therefore, the requirements in a Recipe can be specified either 
formally in RDF format or in natural language using the NLQ. The purpose of an NLQ is 
that an LLM can understand it and search for a matching thing / machine which can fulfill 
the requirements specified in Recipe. With this approach, we could leverage LLMs to 
convert the NLQ into SPARQL query to search for a required thing / machine.  
Since the skills of a thing / machine can be defined using the XML-based OPC UA 
standard, we need to convert these skills into the RDF format. This conversion allows us 
to use SPARQL for discovering skills that meet the required capabilities of a Recipe. To 
achieve this, we have implemented the work from [Schiekofer19] in the DataOps tool, 
as detailed in Section 3. Our approach allows us to construct an OPC UA ontology to 
describe skills and match them with the required capabilities. Given the complexity of 
the OPC UA ontology, we leverage LLMs to formulate SPARQL queries, which are then 
used to match skills against capabilities. It makes the application development process 
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more intuitive and interactive to a user as the user can specify the requirements for the 
application in natural language.  
The use of LLMs has not been originally planned in the description of work in the 
SmartEdge project. However, meanwhile the use of LLMs and AI, in general, with graph 
data and semantic models has been increasing significantly. Thus, in the SmartEdge 
project we started the development of an LLM based approach for Recipe 
implementation. Currently it is being tested with OPC UA standard. For this purpose, 
Mendix is extended with an LLM-based application called OPC UA copilot which provides 
a natural language interface over OPC UA knowledge graphs (A3.3). The OPC UA copilot 
converts the NLQ into a SPARQL query, executes that query on the underlying OPC UA 
knowledge graph and returns the results to Mendix to implement the application 
specified by a Recipe. The LLM driven approach is shown in Figure 2-3. 
 
 

 
Figure 2-3: LLM-driven approach to address user’s requirements in Recipe development 

The workflow, which we are implementing for discovery purposes with LLMs in Mendix 
(MX), is performed in the following steps: 

1) A User or a Recipe developer expresses his/her requirements in natural 

language.  

2) An LLM interface (integrated in MX) produces a SPARQL query. The query 

captures user’s requirements. 

3) Repository evaluates the query and provides answer to MX. 

4) An extension of MX will generate a MX component, which connects to a node 

via OPC UA standardized interface (A3.2). 

5) Process will repeat for other capabilities in a Recipe. 

2.1.3 Final Design of Middleware with Standardized Semantic Interfaces (A3.2) 
 
Standardized semantic interfaces provide a common way to access the devices' data 

from the application level. For the different use cases covered by the project, in 

deliverable D3.1 we identified a need for communication across diverse protocols, such 
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as OPC UA, MQTT, DDS5, and Bluetooth (BLE). Ensuring interoperability at the protocol 

level is essential to make use of these interconnected systems.  

To overcome the challenges of multi-protocol device communication and to enable 

interoperability at the protocol layer, we envision using a middleware solution that 

unifies the messages across different protocols and enables interoperability as shown in 

Figure 2-4. The messages from different protocols being unified at the middleware layer 

allow the dataflow vertically and horizontally and, also, enable unified access to the data 

from the application layer. 

 

 
Figure 2-4: Standardized Semantic Interfaces in SmartEdge. 

 

This feature will be delivered in the form of a Docker container, containing Zenoh router 

and a set of plugins and backend libraries to support use case specific communication 

protocols. In the first iteration, Zenoh router is extended with MQTT and DDS as 

southbound interfaces and REST as a northbound interface. 

Initially, the project proposal outlined that the middleware with Standardized Semantic 

Interfaces would support four brownfield protocols and more than three greenfield 

devices (see KPI K2.1). For greenfield protocol support, we proceeded with the design 

and implementation as planned (see Section 2.2.3). However, the use case requirement 

analysis revealed that supporting brownfield protocols was unnecessary. Instead, in use 

cases UC1 and UC4, it became evident that the SmartEdge middleware should also 

extend protocol integration within a virtual environment. Consequently, our design for 

the middleware with Standardized Semantic Interfaces now includes support for two 

additional protocol integrations (OPC UA and MQTT) for Unity, the preferred virtual 

environment in SmartEdge (Figure 2-4). Unity is used in SmartEdge in Use Case 1 and 

Use Case 4.  

 
5 https://www.dds-foundation.org/  

https://www.dds-foundation.org/
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In virtual environments, interoperability and communication interfaces are also use 

case-dependent, much like in real-world scenarios. For instance, in SmartEdge Use-Case 

1, interoperability is achieved using Thing Descriptions with protocol bindings like 

MQTT. In contrast, Use Case 4 utilizes the OPC UA standard. 

In Use Case 1 (UC1), a "Thing" in a virtual world exposes its interfaces via a Thing 

Description (TD) with an MQTT binding, which abstracts whether the thing is virtual or 

physical. This layer of abstraction enables any component in the SmartEdge ecosystem, 

including the SmartEdge Recipe model and the Mendix toolchain, to use virtual things 

in virtual worlds in exactly the same way as physical things with the same Thing 

Description. The (Remote) Rendering Runtime is responsible for managing the 

lifecycle—including activation and deactivation—of Thing Descriptions associated with 

virtual things (see Example in previous subsection).  

In Use Case 4 (UC4), the OPC UA standard is employed to describe a "Thing" and facilitate 
data communication. Unity serves as the Industrial Metaverse environment for virtual 
commissioning. The low-code runtime interacts with Unity via the OPC UA protocol. 
Consequently, in SmartEdge, the middleware with standardized semantic interfaces also 
integrates the low-code environment with the virtual environment using the OPC UA 
protocol, as illustrated in Figure 2-4. 

2.1.4 Final Design of Knowledge Graph Repository (A3.3) 
 
SmartEdge Knowledge Graph Repository is a specialized semantic repository designed 
for the storage, retrieval, and management of standardized device descriptions. The 
repository supports W3C Web of Things and OPC UA standard. For example, a device 
can be described either with a W3C Thing Description (TD) or with an OPC UA Nodeset.  
 
In both cases, the device description can be retrieved via an interface of the Knowledge 
Graph Repository. Figure 2-5 shows two standardized interfaces of the SmartEdge 
Knowledge Graph Repository. The repository implements Thing Description Directory 
(TDD) API, which is a standardized API for TDs6. For OPC UA, a standardized API to access 
data in a knowledge graph does not exist. Still, in both cases we provide a SPARQL 
RESTful interface. These SPARQL interfaces will be used for discovering devices, which 
can be used in the matchmaking process when implementing SmartEdge Recipes. 
Different Triplestore, i.e., databases for RDF graphs, can be configured for A3.3 assuming 
they are compliant with the SPARQL protocol7. SmartEdge Knowledge Graph Repository 
will be offered as a standalone feature.  
 
It will be also possible to integrate the feature with other features, e.g., the Mendix 
Toolchain (A3.4) presented in Section 2.2.5. The discussion on how OPC-UA support is 
enabled via DataOps pipelines is reported in Section 3.3.2, after the discussion of the 
artefacts and features associated with the DataOps toolbox. 
 
 

 
6 https://www.w3.org/TR/wot-discovery/  
7 https://www.w3.org/TR/sparql11-protocol/  

https://www.w3.org/TR/wot-discovery/
https://www.w3.org/TR/sparql11-protocol/
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Figure 2-5: Repository for Thing Descriptions and OPC UA Nodesets 

2.1.5 Final Design of Mendix Toolchain (A3.4) 
 
The Mendix toolchain comprises Mendix Integrated Development Environment (IDE) 
and Mendix runtime. The Mendix IDE will be extended to support development of 
SmartEdge Recipes. The Mendix runtime, is an interpreter that runs Mendix application 
and provides the frontend to the user. This part will also be extended to facilitate 
execution of SmartEdge Recipes. Mendix runtime will interact with A3.3 Knowledge 
Graph Repository over the SPARQL RESTful interface for discovering devices and their 
capabilities and executing the matchmaking process. Mendix runtime will also interact 
with the A3.2 Middleware over REST to execute the Recipes on the selected devices. 
 

 
Figure 2-6: Mendix Toolchain 

Mendix extensions, allowing interactions with Knowledge Graph Repository and further 
extensions will be provided in form of Mendix modules8. Mendix runtime itself will be 
delivered in a form of Docker container, as shown in Figure 2-6. 

 
8 https://docs.mendix.com/appstore/modules/  

https://docs.mendix.com/appstore/modules/
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2.1.6 Final Design of Semantic Media Service (A3.11) 
 
This artefact will facilitate the sharing of streaming semantic media between smart-
nodes in a swarm. Semantic media includes scene understanding graphs, which are 
generated by artefact A5.1.2.2 described in D5.2. The artefact processes and fuses data 
from smart-node depth cameras and LiDARs in the swarm to provide an abstract 
semantic understanding of the objects in the environment from the nodes point of view. 
The semantic scene graph is then streamed to this artefact, A3.11, as illustrated in Figure 
2-7.   
 

 
Figure 2-7: Manufacturing illustration of streaming semantic media service 

 
A smart-node sharing semantic scene understanding graphs publishes the graphs as RDF 
triples on the message topic /perception/scene_understanding/graph. The A3.11 
artefact subscribes to these messages and consolidates the scene understanding graphs 
from multiple smart-nodes to build up a 3D model of the environment based on multiple 
viewpoints and Thing Descriptions from the TDD. The consolidated 3D environment 
model is also represented as RDF triples in a semantic graph, which can then be 
streamed to other smart-nodes in the swarm or used to generate other types of 
semantic media such as a 2D occupancy map, which nodes can use to navigate the 
environment, as illustrated in Figure 2-8. 
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Figure 2-8: Factory schematic and corresponding 2D occupancy map 

The semantic media service will allow smart-nodes to share knowledge about their 
environment and build up a more complete internal model, providing them with 
perspectives they cannot perceive directly. For example, in the factory scenario, several 
ceiling-mounted cameras would be able to provide different perspectives on an 
operational area. Another smart-node in the swarm would be able to subscribe to these 
semantic graph streams and so perceive the operational area in-the-round, facilitating 
the construction of a 3D model of the environment by the smart-node.  
 
A smart-node finds the available streaming sources by first querying the TDD via its 
SPARQL interface and returning all possible streaming smart-nodes in a given region. It 
then directly subscribes to the source smart-nodes’ semantic graph stream. In this way 
smart-node stream sources can be dynamically bound into the swarm. The artefact also 
includes source and target components to facilitate the semantic graph stream, which 
abstract the overlying message-oriented middleware; the only assumption is that the 
middleware supports the publish and subscribe message paradigm. 

2.2 FIRST IMPLEMENTATION 

2.2.1 First Implementation of SmartEdge Schema (A3.1) 
 
SmartEdge schema aims to formally define the important concepts of the SmartEdge 
architecture which are used in swarm formation and execution. Purpose of the 
SmartEdge schema is to enable following swarm functions: 

▪ It can be used during design time for the configuration of a swarm; 

▪ It can be used in run time for identifying the nodes with matching skills which 

can join a swarm; 

▪ It can be used to monitor the execution of a swarm (e.g., entry of a node into 

swarm, exit of a node and replacing a node in swarm). 

 

The SmartEdge schema defines the concepts that are common to all swarms regardless 
of the use case applications, such as swarm co-ordinator, its interactions with a swarm 
orchestrator, industrial knowledge graph to discover nodes with required capabilities 
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and nodes in the swarm. Detailed explanation about concepts is presented in D3.1. 
While SmartEdge schema represents the runtime attributes of a swarm, the Recipe 
model represents an application template. When a Recipe is instantiated then the 
instance is considered as a swarm, which is dynamic and the nodes in the swarm can be 
replaced with other suitable nodes in runtime. The relationship between the Recipe and 
its corresponding swarm is captured in the SmartEdge schema using RecipeID class as 
represented in Figure 2-9. 
 
The Figure represents the concepts in the SmartEdge schema and the relationships 
between them. The main concepts in the schema are the SmartEdge node, SmartEdge 
smart node, swarm co-ordinator and the swarm orchestrator. SmartEdge smart node is 
a subclass of SmartEdge node where the smart node has the capability to dynamically 
join or leave the swarm. Each of these nodes has certain attributes and relationships 
with other nodes which is depicted in Figure 2-9. 
 

 
Figure 2-9: Overview of SmartEdge Schema 

 
Each SmartEdge node has the attributes such as: node id, node capabilities, network 
attributes, location, events it publishes and subscribes, security scheme to connect to 
the node, its reachability state etc. which are characteristics of a node. A swarm 
coordinator has attributes such as swarm-id, network attributes etc. as it manages the 
swarm and connects to the nodes in the network. Swarm orchestrator has a relationship 
to the Recipe which it runs through the swarm. The first version of SmartEdge schema 
is implemented in RDF format and it can be found on the SmartEdge repository: 
https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31. 
SmartEdge use cases could use the schema to describe a swarm in their use cases. 

2.2.2 First Implementation of Recipe Model (A3.1) 
 
The Recipe model is finalized and it can be found on the SmartEdge GitHub: 
https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31. Based 
on the finalized Recipe model, a first implementation of the discovery with Recipes is 

https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31
https://gitlab.com/smartedge-project-eu/SMARTEDGE/-/tree/main/WP3/A31
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done. The Recipe model is independent of standards (e.g., OPC UA, W3C WoT). The 
nodes with matching capabilities that are implemented using OPC UA or W3C WoT can 
be discovered and a Recipe can be implemented with them. Discovery of required nodes 
is done by generating SPARQL queries from Recipes. The SPARQL queries are pre-
defined, and they are different for OPC UA and WoT. That is, we provided a set of 
SPARQL queries which can discover matching nodes implemented with W3C WoT 
standard. For Discovery of nodes from descriptions compliant with the OPC UA standard, 
i.e., OPC UA NodeSets, we use latest AI technologies such as Large Language Models 
(LLMs). This approach is described briefly in section 2.1.2. Based on the first 
implementation of Recipe discovery with LLMs in Mendix, here we provide a few 
example Recipes based on the W3C Web of Things Thing Descriptions and a Recipe for 
UC4, which is based on the OPC UA standard. 
 

2.2.2.1 Example Recipe for Smart Factory Application based on OPC UA Standard for UC4 
 

Below we provide a simple example Recipe considering nodes described according to 
the OPC UA standard. The Recipe is related to UC4 in SmartEdge. The sample Recipe 
does not completely represent any UC4 application, rather it is part of an application 
described in UC4. The purpose of the Recipe is to assemble a product in a manufacturing 
unit. The application should load an empty tray into an assembly module of a 
manufacturing unit where the product gets assembled in multiple steps by inserting 4 
different types of blocks onto the tray. After assembly, the product should be unloaded 
from the assembly module. The corresponding Recipe JSON-LD description for this 
application is presented in Section 7 (Annex I) of this document. 
 
The discovery of matching capabilities for the above Recipe can be done based on the 
NLQ in the Recipe using a LLM application that is integrated into Mendix for discovery 
of OPC UA data points. The above Recipe consists of the workflow depicted in Figure 
2-10. 
 
 

 
Figure 2-10: Graphical representation of sample Recipe for smart factory application in UC4 

2.2.2.2 Example Recipe with W3C Web of Things Thing Descriptions 
 
Below we provide a simple example Recipe. The Recipe is not part of any use case in 
SmartEdge. We provide here a use case agnostic example which is easily 
understandable. The purpose of the Recipe is to turn on or turn off a lamp based on the 
proximity of a person or object to the lamp. The business logic for the application based 
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on Recipe is not part of the Recipe semantic model. When the Recipe is created in 
Mendix then business logic can be added to it through Mendix nodes as shown in section 
69. The created business logic will be part of the Mendix project. In this example, the 
Recipe will be instantiated on things implemented with Web of Things standard which 
have corresponding Thing Descriptions.  
 
{ 
 "@context":[ 
       { 
          "RecipeModel":"http://www.semanticweb.org/SmartEdge/RecipeModel/", 
          "saref4bdlg": "https://saref.etsi.org/saref4bldg/", 
          "saref": "https://saref.etsi.org/saref/", 
          "iot": "http://iotschema.org/", 
          "@id":"http://www.semanticweb.org/SmartEdge/RecipeModel/", 
          "@type":[ 
             "http://www.w3.org/2002/07/owl#Ontology" 
          ] 
       }], 
    "@type":[ 
       "RecipeModel:Recipe" 
    ], 
    "title":"Lamp control Recipe", 
    "NLQ": "An application to turn off a lamp based on the proxmity of a person or an object", 
    "RecipeModel:hasCapability":{ 
       "@type":[ 
          "iot:LightControl" , "iot:MotionControl" 
       ] 
    }, 
    "RecipeModel:hasIngredients":[ 
       { 
          "status":{ 
             "@id":"b4493a89cfd4a062", 
             "NLQ": "find a sensor which can detect motion in <room_x>", 
             "description":"current status of the lamp", 
             "@type":[ 
                "iot:MotionDetected", 
                "RecipeModel:Ingredient" 
             ], 
             "RecipeModel:hasOutputData":{ 
                "type":"boolean" 
             }, 
             "RecipeModel:operation":"RecipeModel:Retrieve", 
             "iot:capability" :  
             {"@type" : "iot:MotionControl"}, 
             "RecipeModel:interactsWith":[ 
             { 
             "hasSerialNumber": "1", 
             "@id": "bcfca6fc0f1c1e8b", 
             "RecipeModel:operation":"RecipeModel:Update" 
             }]}}, 
       { 
          "toggle":{ 



D3.2 First implementation of tools for CSI SmartEdge GA 101092908 
 

21 
 

            "@id":"bcfca6fc0f1c1e8b", 
            "NLQ": "find a lamp which can be turned on and off in <room_x>", 
             "description":"Turn the lamp on or off", 
             "@type":[ 
                "iot:Toggle", 
                "RecipeModel:Interaction" 
             ], 
             "RecipeModel:hasInputData":{ 
                "type":"boolean" 
             }, 
             "iot:capability" :  
             {"@type" : "iot:LightControl"}, 
             "RecipeModel:operation":"RecipeModel:Update" 
          }} 
 
In order to instantiate the sample Recipe, we should discover the things which have the 
capabilities specified in the Recipe. In the sample Recipe, the capabilities are 
MotionControl which can detect the motion in a room (with MotionDetected property) 
and LightControl capability which can control the lamp in a room (with Toggle action). 
The discovery can be done by generating the SPARQL queries from the Recipe 
description manually (or by using an LLM which takes the NLQ in the Recipe as input and 
automatically generates the SPARQL queries to discover the required things in case of 
OPC UA). 

2.2.2.3 Recipe Discovery 
 

In order to instantiate an application based on a Recipe, we need to discover the nodes 
which can match the requirements defined in the Recipe. Since the Recipe is an RDF 
description, SPARQL queries can be used to discover the matching nodes. For this 
purpose, SPARQL queries should be generated from the Recipe. The queries should be 
executed on a knowledge graph where the semantic descriptions of nodes are stored. 
For each standard (e.g., W3C WoT, OPC UA etc.), the queries can be pre-defined. That 
is, in order to discover matching WoT Thing Descriptions (TD) from a Recipe a pre-
defined SPARQL query can be instantiated. The SPARQL queries shown in this section 
will discover the matching nodes described with W3C WoT TDs which can run the lamp 
control Recipe described above. The queries discover: (i) a WoT TD with MotionControl 
capability which has interaction affordance to detect motion, (ii) another WoT TD with 
light control capability which has interaction affordance to turn on or turn off a lamp. 
Additionally, the queries search for both nodes located in the same building and the 
same room.  
 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
PREFIX td: <https://www.w3.org/2022/wot/td/v1.1/>  
PREFIX iot: <http://iotschema.org/> 
PREFIX saref: https://saref.etsi.org/saref/ 
PREFIX saref4bdlg: <https://saref.etsi.org/saref4bldg/> 
 
SELECT ?title ?id ?at ?iat ?op ?href 
{ 
    ?s rdf:type td:Thing . 
    ?s rdf:type ?thingType . 

https://saref.etsi.org/saref/
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    ?s td:title ?title . 
    ?s td:id ?id . 
     
    ?s ?interaction ?interAff . 
    ?interAff rdf:type ?at . 
    ?o1 rdf:type ?iat . 
    ?o1 td:forms ?b . 
    ?b td:op ?op . 
    ?b td:href ?href . 
 
    FILTER (?at IN (td:PropertyAffordance, td:ActionAffordance, td:EventAffordance)) 
     FILTER (?thingType = iot:MotionControl) . 
    FILTER (?iat IN (iot:MotionDetected )) . 
 
OPTIONAL {?s saref4bdlg:isContainedIn "Room_1" . } 
OPTIONAL {?s saref4bdlg:isSpaceOf "Building_1" . } 
} LIMIT 100 
SELECT ?title ?id ?at ?iat ?op ?href 
{ 
    ?s rdf:type td:Thing . 
    ?s rdf:type ?thingType . 
    ?s td:title ?title . 
    ?s td:id ?id . 
     
    ?s ?interaction ?interAff . 
    ?interAff rdf:type ?at . 
    ?o1 rdf:type ?iat . 
    ?o1 td:forms ?b . 
    ?b td:op ?op . 
    ?b td:href ?href . 
 
    FILTER (?at IN (td:PropertyAffordance, td:ActionAffordance, td:EventAffordance)) 
     FILTER (?thingType = iot:LightControl) . 
    FILTER (?iat IN (iot:Toggle )) . 
 
OPTIONAL {?s saref4bdlg:isContainedIn "Room_1" . } 
OPTIONAL {?s saref4bdlg:isSpaceOf "Building_1" . } 
} 
LIMIT 100 
 
Below is an example WoT TD that is discovered from the SPARQL queries specified 
above. 

{ 

    "@context": ["https://www.w3.org/2022/wot/td/v1.1", 
    {"saref4bdlg": "https://saref.etsi.org/saref4bldg/", 
     "saref": "https://saref.etsi.org/saref/"}], 
 
    "id": "urn:uuid:014139c9-b267-4db5-9c61-cc2d2bfc217d", 
    "title": "MyLampThing", 
    "@type": ["saref4bdlg:Lamp"], 
    "saref4bdlg:isContainedIn" : "Room_1", 
    "saref4bdlg:isSpaceOf" : "Building_1", 
    "securityDefinitions": { 
        "basic_sc": { 
            "scheme": "basic", 
            "in": "header" 
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        } 
    }, 
    "security": "basic_sc", 
    "properties": { 
        "status": { 
            "@type" : "saref4bdlg:colorTemperature", 
            "type": "string", 
            "readOnly": false, 
            "writeOnly": false, 
            "observable": false, 
            "forms": [{ 
                "op": [ 
                    "readproperty", 
                    "writeproperty" 
                ], 
                "href": "https://mylamp.example.com/status", 
                "contentType": "application/json" 
            }] 
        } 
    }, 
    "actions": { 
        "toggle": { 
            "@type" : "saref:Switch", 
            "safe": false, 
            "idempotent": false, 
            "forms": [{ 
                "op": "invokeaction", 
                "href": "https://mylamp.example.com/toggle", 
                "contentType": "application/json" 
            }] 
        } 
    }, 
    "events": { 
        "overheating": { 
            "@type" : "saref4bdlg:Alarm",  
            "data": { 
                "type": "string", 
                "readOnly": false, 
                "writeOnly": false 
            }, 
            "forms": [{ 
                "op": "subscribeevent", 
                "href": "https://mylamp.example.com/oh", 
                "contentType": "application/json", 
                "subprotocol": "longpoll" 
            }] 
        } 
    } 
} 
 
A SPARQL query template can be extracted from the above queries to discover WoT TDs 
from a given Recipe. The template can be instantiated based on the capabilities 
described in a Recipe. Such a sample template is presented in the below snippet. 
 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
PREFIX td: <https://www.w3.org/2022/wot/td/v1.1/>  
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PREFIX saref4bdlg: <https://saref.etsi.org/saref4bldg/> 
PREFIX saref: <https://saref.etsi.org/saref/> 
 
SELECT ?title ?id ?at ?iat ?op ?href 
{ 
    #Get the title and id of a thing with capability_type 
    ?s rdf:type td:Thing . 
    ?s rdf:type ?thingType . 
    ?s td:title ?title . 
    ?s td:id ?id . 
     
    #Get interaction affordances, their data types, their allowed operations and hrefs 
    ?s ?interaction ?interAff . 
    ?interAff rdf:type ?at . 
    ?o1 rdf:type ?iat . 
    ?o1 td:forms ?b . 
    ?b td:op ?op . 
    ?b td:href ?href . 
 
    FILTER (?at IN (td:PropertyAffordance, td:ActionAffordance, td:EventAffordance)) 
    FILTER (?thingType = <Capability_Type>) . 
    FILTER (?iat IN (<Interaction_1_Semantic_Type>, ..., <Interaction_n_Semantic_Type>  )) . 
 
OPTIONAL {?s saref4bdlg:isContainedIn <Room_no> . } 
OPTIONAL {?s saref4bdlg:isSpaceOf <Building_no> . } 

} 

 

The query template can be part of the Recipe matchmaker in Mendix (A3.9), which can 
instantiate the queries based on a given Recipe. 
 
Alternatively, the requirements for capabilities are also specified in textual format as 
NLQ in the Recipe. This NLQ can be given to an LLM which can generate the SPARQL 
query, execute it on a given knowledge graph and discover the matching things that can 
run the Recipe application.  
Currently, in SmartEdge, the discovery with LLM approach is being tested for OPC UA 
standard to discover machines described with OPC UA information models. Section 19 
presents a sample OPC UA based Recipe with NLQs. The LLM integrated in Mendix uses 
the NLQs and discovers the matching nodes by generating SPARQL queries. 

2.2.2.4 Current status and next steps 
 
Based on these two example Recipes, here we demonstrated that the Recipe model is 
flexible and domain-independent. It can define diverse kinds of applications in diverse 
domains. Therefore, it is suitable for the semantic representation of applications in 
SmartEdge. SmartEdge itself is a proof of concept as its use cases come from diverse 
domains. 
 
As the next steps we will define a capability model based on W3C WoT TD model and 
implement it. Moreover, the Recipe model should be aligned with the Mendix flow 
model (i.e., the Recipe created in Mendix as Mendix flow can be exported in JSON 
format). The terminology in the Recipe model should be mapped with the Mendix flow 
terminology and the context should be generated from the aligned Recipe model. This 
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context can be added to the Recipe Mendix flow, which will transform the Mendix flow 
into RDF format. Finally, Recipes based on the Recipe model should be developed for 
each use case. At present Recipe development has started for UC1 and UC4, the 
examples are provided in this deliverable. 

2.2.3 First Implementation of Middleware with Standardized Semantic Interfaces (A3.2) 
 
We have been working on testing Zenoh as a technology for a middleware solution that 
can be used within SmartEdge. We have successfully completed initial testing with 
Zenoh as a message-oriented middleware. The tests showcased seamless interaction 
using the DDS and MQTT protocols, demonstrating Zenoh's capability to bridge different 
communication standards effectively. 
Another implementation effort was dedicated to integrating OPC UA client functionality 
in a virtual environment, e.g., into the Unity platform. Our new implementation enables 
Unity to connect with an OPC UA server using the OPC UA .NET Standard Stack. This 
integration includes the ability to read data from nodes, write to nodes, subscribe to 
variables' updates. This allows for the use of the OPC UA standard within virtual 
environments. An example, where the OPC UA connector for Unity is used is depicted in 
Section 2.2.2.1.  
Also, a proof-of-concept was developed to integrate MQTT Binding for Thing 
Descriptions into a virtual scene as a Unity plugin, using a remote rendering artefact. 
This demonstrates the potential of using MQTT-based communication for dynamic 
interaction with virtual objects in real-time. An example, where the MQTT connector for 
Unity is used is depicted in Section 2.2.2.2.  
The upcoming tasks focus on further integrating these advancements within the scope 
of Mendix and Middleware interactions. The next objective is to further test Mendix 
microflows that can interact with Zenoh. Further efforts will be directed towards 
integrating virtual scenes with TDDs, including implementing Life Cycle Management for 
virtual Things. This will enable the use of these virtual objects in Recipes. These steps 
are crucial for building a robust framework that can handle complex interactions 
between virtual scenes and real-world systems, paving the way for more dynamic and 
scalable applications. Additionally, the OPC UA connector for Unity will undergo further 
tests and, possibly, extensions. 
In the following two sub-sections we provide example applications that use MQTT and 
OPC UA connectors for Unity, respectively. 
 

2.2.3.1 Example application using MQTT based virtual environment integration 
 
This subsection shows the first implementation of the MQTT based virtual environment 
integration using W3C Thing Description with MQTT protocol binding. The JSON-LD 
example below shows a Thing Description representation of a virtual car from Use Case 
1. In this example, the two properties, acceleration and steering, are the most important 
elements in the Thing Description. They allow an external application, such as ADAC, to 
control the virtual car in the virtual environment, enabling the following: 

• Simulation of complex traffic scenarios in a controlled, repeatable way. 

• Time and cost savings, along with increased safety in testing. 

• Large-scale testing that would be impractical or unsafe in the real world. 
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{ 
    "@context": "https://www.w3.org/2022/wot/td/v1.1", 
    "title": "MyVirtualCar", 
    "id": "urn:uuid:9489991a-7622-45b6-8437-f858b59835d4", 
    "securityDefinitions": { 
        "nosec_sc": { 
            "scheme": "nosec" 
        } 
    }, 
    "security": [ 
        "nosec_sc" 
    ], 
    "properties": { 
        "acceleration": { 
            "data": { 
                "type": "number", 
                "minimum": -1.0, 
                "maximum": 1.0 
            }, 
            "forms": [ 
                { 
                    "href": "mqtt://192.168.1.187:1883", 
                    "contentType": "text/plain", 
                    "op": [ 
                        "readproperty", 
                        "writeproperty" 
                    ], 
                    "mqv:topic": "scene1/things/car1/properties/acceleration" 
                } 
            ] 
        }, 
        "steering": { 
            "data": { 
                "type": "number", 
                "minimum": -1.0, 
                "maximum": 1.0 
            }, 
            "forms": [ 
                { 
                    "href": "mqtt://192.168.1.187:1883", 
                    "contentType": "text/plain", 
                    "op": [ 
                        "readproperty", 
                        "writeproperty" 
                    ], 
                    "mqv:topic": "scene1/things/car1/properties/steering" 
                } 
            ] 
        } 
    } 
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} 
 
Each property in the Thing Description above includes two sections: “data” and “forms”. 
The “data” section defines the structure and restrictions applied to a property, while the 
“forms” section defines the binding to the underlying protocol. In the Thing Description 
example above, the property “steering” accepts only numbers between -1.0 and 1.0, 
indicating the direction of steering (negative values correspond to left turns, positive 
values to right turns, and zero to move straight). It also binds the “steering” property to 
the MQTT protocol via the endpoint provided in “href” and the MQTT topic defined in 
“mqv:topic” In this example, any external application can read and change the 
“steering” property, which maps to MQTT publish or subscribe operations for the topic 
specified in “mqv:topic”. 
 
The virtual car Thing Description can be used in a virtual scene whereas a virtual scene 
is a digital replica of a physical environment, such as a factory or traffic situation. In these 
environments, physical entities like robots, cars, and many others are represented in the 
virtual scene by their digital entities/assets, or digital twins. Since the SmartEdge 
ecosystem is represented by a set of interworking artefacts, it is a key requirement to 
make the digital assets in virtual scenes accessible to other SmartEdge components in 
the same way as physical assets. W3C Thing Description is a suitable method to enable 
this functionality. The Rendering Engine exposes all virtual assets in a virtual scene using 
Thing Description, making them available in a Thing Description repository, where Thing 
Descriptions of physical assets are also registered. In this way, a SmartEdge application 
that uses the Thing Descriptions from the repository will not need to distinguish 
between physical and virtual assets. Figure 2-11  shows an example of a virtual scene for 
a traffic scenario with virtual cars that mimic the behaviour of physical cars in a real 
traffic scenario.  
 

 
Figure 2-11 Virtual Scene with Virtual Car 
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2.2.3.2 Example application using OPC UA based virtual environment integration 
 
In Use Case 4, Unity9 is used for the purpose of virtual commissioning in an Industrial 
Metaverse environment. The Mendix low-code runtime communicates with Unity over 
OPC UA protocol. Industrial assets, like the assembly module seen in Figure 2-12, have 
a digital twin in Unity. The real asset is defined using OPC UA's standardized semantics 
in the form of skills, which are then mapped to its virtual representation. Leveraging 
these OPC UA skills, the low-code runtime, enhanced with large language models, can 
swiftly and easily generate Recipes. These Recipes are executed within the virtual 
environment for virtual commissioning. To ensure the generated Recipe matches the 
low-code engineer’s vision, the virtual environment employs physics simulations to 
preview the Recipe's execution. This visual confirmation allows the engineer to verify 
the accuracy and behaviour of the production line. 
 

 
Figure 2-12: Production Module with its Virtual Counterpart and OPC UA Information Model from UC4 

2.2.4 First Implementation of Knowledge Graph Repository (A3.3) 
 
The Knowledge Graph Repository is the basis for semantic queries and the discovery 
service in the low-code toolchain. We use the Domus TDD API from Eclipse Thingweb as 
our Knowledge Graph Repository. Domus implements a Python and SPARQL-based 
Thing Description Directory (TDD). It complies with the W3C specifications and 
implements the Web of Things Discovery Exploration Mechanisms. The API relies on a 
SPARQL endpoint as a database connection. The supported endpoints are Apache Jena's 
Fuseki, Ontotext's GraphDB, OpenLink Software's Virtuoso, and AWS Neptune. Fuseki is 
set as the default endpoint. If one wants to change the endpoint, they can do so using 
two methods: (i) editing the config.toml file with the corresponding 
SPARQLENDPOINT_URL value, or (ii) by using environment variables like so: export 
TDD__SPARQLENDPOINT_URL="http://my-new-sparql.endpoint/address". 
The Figure 2-13 shows how the JSON and RDF files are dealt with in the TDD API. 
 
 

 
9 https://unity.com/  

https://github.com/eclipse-thingweb/domus-tdd-api
https://w3c.github.io/wot-discovery/#exploration-mech
https://unity.com/
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Figure 2-13: Thing Description Upload and Retrieval via TDD API 

The Knowledge Graph Repository is released as part of the first SmartEdge release. It is 
shipped with the docker-compose file and is available on the Docker registry on the 
project integration environment. To enable storing of OPC UA NodeSets in RDF format, 
a DataOps pipeline was designed and implemented. The first version of a SPARQL query 
interface for OPC UA NodeSets is available for the first release and fully documented in 
Section 3.3.2 (DataOps Pipeline for OPC-UA support).  

2.2.5 First Implementation of Mendix Toolchain (A3.4) 
 
Recent progress has been made in extending Mendix capabilities, particularly in 
supporting various communication protocols and integrating new connectors for 
advanced use cases. The first version of the WoT client connector has been developed. 
It allows to read/write a property, subscribe to an event, and/or invoke an action via 
WoT REST API. The developed functional blocks are shown in Figure 2-14. 
 

 
Figure 2-14: Mendix toolbox for WoT client 

 
Besides that, the latest version of Mendix has been successfully extended to include 
support for BLE communication, specifically tailored for the use case 5b. This connector 
allows to directly get the data from BLE-devices in the Recipe’s instances, running in 
Mendix runtime. Furthermore, the OPC UA connector for Mendix has been extended to 
support the OPC UA method calls. The current version supports only the parameter-less 
methods and must be extended in the future release to be capable of calling the 
methods with parameters. With further successful tests of BLE, OPC UA, and REST 
connectors, Mendix supports various communication protocols and allows to use 
diverse devices to run the Recipes. Also, the Mendix runtime capable of executing 
Recipes has been dockerized and provided as an artefact. 
The following steps towards the second release of SmartEdge tools, include extending 
Mendix to support the SmartEdge Recipe model. This will enable the development of 
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low-code solutions that can leverage predefined Recipes, simplifying the creation and 
reusability of complex IoT applications. 

2.2.6 First Implementation of Semantic Media Service (A3.11) 
 
The artefact is scheduled for the second release of SmartEdge and has been delayed due 
to resources and other priority work. Initially, the plan was to use projective geometry 
to calculate the location and pose of the objects in the environment, but this did not 
prove to be possible, so another technique had to be developed by matching partial 
images to the object. We have started work on building an image dataset of 
manufacturing equipment. The dataset will be used for a number of purposes, including 
training object detectors to classify objects in the environment correctly. The artefact 
also extensively uses the dataset to model the objects in both CAD and URDF. The 
models form a digital twin of the object that allows the pose of the object to be decerned 
from only a partial image.  
 
As next steps, we will complete the modelling of the objects in the environment and 
start training the object classifiers. Furthermore, we aim to investigate techniques for 
calculating the location and pose of an object for a partial image. This work is still 
ongoing but iNeRF looks promising.     
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3 DATAOPS TOOL FOR SEMANTIC MANAGEMENT OF THINGS AND 

EMBEDDED AI APPS 
 
The DataOps toolbox is designed and implemented in SmartEdge to support the 
continuous integration of Things and Apps, facilitating their deployment from the Cloud 
to the Edge. This tool aims to provide a solution for enabling data exchanges, 
harmonisation, and integration in implementing edge intelligence among nodes within 
a swarm. A special focus is given to the performance and scalability requirements and 
the need to support different deployment environments. 
 
Considering the SmartEdge requirements elicited in D2.1 and refined in D2.2, the 
DataOps toolbox has been designed in D3.1 to address two main challenges: 

▪ Interoperability of static node information: the description of the node 
information and its capabilities should be made interoperable and 
exchanged/retrieved according to common semantics; 

▪ Interoperability at runtime within a swarm: a node's runtime information should 
be made interoperable, or the runtime data exchanges between nodes in the 
swarm should be mediated to guarantee their interoperability. 

 
To achieve this, the following list of functionalities should be supported by the DataOps 
toolbox: 

▪ Implementation of mediated data exchanges between an input and target 
node/component requiring different interaction mechanisms (e.g., from MQTT 
queue to REST API); 

▪ Conversion of heterogeneous (semi-)structured data from an input 
format/schema to a target format/schema (e.g., JSON using custom schema to 
RDF using target ontology); 

▪ Data integration/fusion by leveraging a common semantic representation, i.e., 
data can be converted to an RDF graph using a shared reference ontology. 

 
Since implementing such functionalities depends on each scenario's specific 
requirements, a single solution cannot exist. For this reason, the DataOps toolbox is 
designed as: 

▪ DataOps Pipeline Components (A3.5): a set of composable modules that can be 
appropriately configured and combined within a pipeline to address 
heterogeneous integration requirements within a swarm. 

▪ DataOps Deployment Templates (A3.6): reusable templates to provide flexibility 
in deploying DataOps pipelines both in the Cloud and on the Edge. 

▪ Low-code DataOps Configuration (A3.7): low-code approaches to support 
developers in the configuration of the pipelines. 

As an orthogonal non-functional requirement, we focus on the performance and 
scalability of the DataOps tool that is evaluated considering the KPI 2.2 and 2.3. 
 
The remainder of this chapter presents the final design and the first implementation of 
the artefacts A3.5, A3.6 and A3.7. 
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3.1 FINAL DESIGN 
 
This section presents the final design of the DataOps toolbox and highlights the main 
innovations for each artefact. The diagram in Figure 3-1 represents the three artefacts 
implemented for the DataOps toolbox and their relation.  
 
We describe the diagram by considering an example scenario related to implementing 
a mediated data exchange between two nodes within a swarm. The implementation of 
a proper DataOps pipeline for each data exchange requires the following information: 

▪ Input/output data connector required 
▪ Input and target output data format and schema 
▪ Associated performance/scalability constraints and requirements 

 
Based on these requirements, a set of components should be identified and selected 
considering the ones made available by A3.5. Such components can be composed and 
configured to define a DataOps pipeline. The low-code definition of the pipelines is 
enabled by the adoption of declarative approaches for defining the interactions among 
the components and the schema and data transformations to be performed.  
Moreover, A3.7 enables the possibility of relying on a GUI to configure the pipeline via 
a drag-and-drop editor that also guides the user in the selection of the parameters for 
each selected component. 
 

 
Figure 3-1:  DataOps Toolbox related artefacts and their relation 
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The DataOps Tool should support diverse needs, particularly considering the different 
strategies for deploying a solution for mediating data formats and semantics. The 
diagram in Figure 3-2 shows different options that can be adopted for the integrated 
execution of a DataOps pipeline within the swarm: 

▪ Within a dedicated smart-node10 (mediation node) 
▪ Embedded in the swarm orchestrator (mediation service) 
▪ Embedded in the middleware/network layer 
▪ Embedded in the source/target smart-node 

 
 

 
Figure 3-2: Deployment options for the DataOps Toolbox 

 
Each option is associated with different trade-offs and depends on the specificities of 
the considered scenario. In the first two cases, the orchestrator could possibly enable 
the deployment of a mediation node or the execution of a mediation service by 
considering the requirements of the Recipe to be executed and the nodes composing 
the swarm. The last two cases assume a predefined configuration for either the 
middleware or specific nodes to enable their cooperation within a Recipe executed by 
the orchestrator. 
A3.6 provides a set of templates to deploy a pipeline in different deployment 
environments. The right template can be selected considering resource availability and 
deployment strategies and used to execute the specified pipeline. Generally, the same 
pipeline can be deployed in different deployment environments without requiring 
specific modifications. 
 
D3.1 reports the analysis of the state of the art and the main design decisions made for 
each DataOps artefact. In this section, we briefly summarise the relevant content from 
D3.1 to ensure that the document is self-contained and describe the final design of A3.5, 
A3.6 and A3.7. 

 
10 As in D3.1, we define a smart-node as a node that can be modified to execute SmartEdge components. 
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3.1.1 Final Design of the DataOps Pipeline Components (A3.5) 
 
The DataOps component is designed to provide the necessary building blocks to 
configure heterogeneous DataOps pipelines for data operations in SmartEdge.  
 
From the state-of-the-art analysis reported in D3.1, the declarative semantic conversion 
process represented in Figure 3-3 is selected as the approach to enable data 
interoperability and data integration. Declarative mapping rules are leveraged to 
configure to/from transformations from a reference conceptual model relying on 
Semantic Web technologies for syntactic and semantic interoperability. This any-to-one 
approach reduces the number of mappings to be defined in case of point-to-point 
integrations and improves scalability when enabling interoperability between numerous 
data models/standards [Vetere05]. The mapping rules are decoupled from the 
component responsible for their execution to improve their maintainability and 
reusability. 
 

 
Figure 3-3: Declarative semantic conversion process for interoperability 

To implement such an approach, we designed the DataOps pipelines as represented in 
Figure 3-4. The main types of building blocks are the Node Data Connector, which are 
blocks responsible for enabling data exchanges with different types of 
interfaces/protocols, and the Mapping Processor, which are blocks capable of executing 
declarative mapping rules for data and schema transformations. Additional blocks may 
be integrated within a pipeline to perform additional manipulations or to implement 
Enterprise Integration Patterns [Hohpe04]. 
 

 
Figure 3-4: DataOps Pipeline 

 
We selected the Apache Camel 11  framework as a solution enabling enterprise 
integrations through the configuration of building blocks within an executable pipeline.  

 
11 https://camel.apache.org/  

https://camel.apache.org/
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Moreover, Apache Camel offers many production-ready components that can be easily 
integrated within a pipeline as Node Data Connector for common protocols and 
interfaces. Finally, Camel can be easily extended to define custom-defined components 
to be integrated within a pipeline. 
 
As a reusable component for Apache Camel, the Chimera framework 12  introduces 
operations for constructing, manipulating, and exploiting knowledge graphs within a 
pipeline. It provides support for operations on an RDF graph (either local or remote), 
execution of declarative mapping rules adopting the RDF Mapping Language (RML)13 
specification and the execution of template-based mapping rules leveraging the Apache 
Velocity14 Template Engine. The Apache Camel components and the one introduced by 
the Chimera framework are defined as A3.5, i.e., the DataOps components for 
implementing the required pipelines in SmartEdge. 
 
The design and implementation activities for the first release focused on: 

▪ the redesign of the template-based mapping rule component (Mapping 
Template) to enable generic knowledge conversion via declarative mapping 
rules while improving performance and scalability; 

▪ a complete refactor of the Chimera framework to increase the solution's overall 
TRL, improve its reusability and facilitate the configurability and composability 
of pipelines. 

 
For the second release, we will focus on improving the maturity of the DataOps 
components with respect to the new functionalities (e.g., improve the integration of the 
mapping-template within the respective Camel component), and we will address 
additional requirements emerging from SmartEdge use cases in the piloting activities 
within WP6 (e.g., in terms of building blocks required within a pipeline). Moreover, 
considering the evaluation performed for the first release (discussed in Section 3.2.1.3), 
we will investigate approaches to monitor DataOps pipelines and further improve 
performance and scalability of the pipeline executions. 
 

3.1.1.1 Mapping Template Component 
 
Starting from analysing mapping languages and mapping processors for declarative RDF 
Knowledge Graph construction, reported in D3.1, we designed a workflow for generic 
knowledge conversion [Scrocca2024]. This workflow aims to build on the work done for 
the declarative materialisation of RDF triples for the definition and execution of 
declarative mapping rules towards a generic output. Indeed, nodes involved within a 
swarm are usually not able to directly process an interoperable representation of data 
in RDF . 
 
The final version of the workflow, represented in Figure 3-5, depicts a general mapping 
scenario in which data from a source, formatted according to a specified input format 

 
12 https://github.com/cefriel/chimera  
13 https://rml.io/  
14 https://velocity.apache.org/  

https://github.com/cefriel/chimera
https://rml.io/
https://velocity.apache.org/
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and model, needs to be converted into a target format and model before being stored 
in a designated data sink. This mapping scenario may include the integration of extra 
data sources to produce the output and the application of data and schema 
transformations throughout the process. The workflow outlines the foundational 
elements for a generic declarative mapping language along with the relevant 
components necessary for a mapping process executing the mappings. 
The parsing and extraction process from heterogeneous data sources is generalised 
considering the concept of data frame, i.e. a two-dimensional data structure made of 
rows and columns. The overall workflow can be summarized as follows: 

▪ the input data sources are accessed according to a specific configuration (e.g., 
protocol/interaction mechanism); 

▪ the retrieved data are extracted and used to initialize a set of data frame 
structures; 

▪ data transformations or combination operations (e.g., join) can be applied to 
the data frame structures; 

▪ a set of declarative mapping rules is executed to map the content of the data 
frame structures to the target schema; 

▪ the output data are written to data sinks according to specific configurations. 
 

 

Figure 3-5: Final workflow for generic knowledge conversion enabled by a DataOps pipeline 

 
Based on this workflow, we redesigned and refactored the mapping-template15 library 
that supports data and schema transformations by leveraging the Apache Velocity 
template engine. In particular, we defined a Mapping Template Language16 (MTL) on top 
of the Velocity Template Language (VTL) to define mapping rules for generic knowledge 
conversion according to the defined workflow building blocks. The overall goal is to 
leverage the competitive performances provided by the adoption of a template engine 

 
15 https://github.com/cefriel/mapping-template 
16 https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL) 
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while providing users with a declarative mechanism to specify mapping rules.  The 
details about the developments performed are reported in Section 3.2.1. 
 
The definition of mapping rules as templates trades some aspects of a fully declarative 
approach. However, it covers three important requirements emerging in SmartEdge: 

▪ provide flexibility in the generated output since many nodes can not process 
RDF; 

▪ handle complex transformation scenarios (e.g., requiring functions with side 
effects); 

▪ facilitate the definition of mapping rules for users unfamiliar with RDF.  
 
Nevertheless, to support users willing to adopt a fully declarative approach and not 
interested in the mentioned features, we implemented RML compliance for this 
component, as discussed in Section 3.2.1. This implementation supports the claim that 
the proposed MTL could generalize the declarative mapping rule specification for KG 
construction. 
 
As an additional advantage of the new implementation, the decomposition in blocks of 
mapping rule definitions and executions enables the explicit specification of 
optimization strategies to improve the performance and scalability of mapping rules 
considering a target scenario. For example: 

▪ the number of accesses to the input data sources and the information extracted 
can be optimised by defining the minimum number of data frame required for 
the mapping rules to be applied; 

▪ the join execution can be optimized by applying appropriate combination rules 
directly to the data frames. 

 

3.1.1.2 Chimera 
 
To facilitate integration within the Apache Camel ecosystem, Chimera was redesigned 
to define distinct Camel components, each one compliant with Apache Camel’s 
guidelines17. Camel components are collections of related functionalities focused on 
specific tasks. For instance, the FileComponent provides capabilities for file operations 
like deleting, creating, and copying files. Components expose these functionalities 
through configurable options known as endpoint parameters. Each Endpoint is identified 
by a URI, which consists of the component’s unique identifier followed by its 
configuration parameters. For example, the URI file://inputdir/?delete=true specifies 
the use of the File component, where inputdir is the target directory, and the delete=true 
parameter instructs Camel to delete files in this directory after processing.  
 
Components are then linked sequentially within Routes, where each component is 
executed in the specified order. An example Camel route is shown in Figure 3-6,  where 
data is read from a directory using the FTP component and is then sent to the example 
queue using the ActiveMQ component. 
 

 
17 https://camel.apache.org/manual/component.html 
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Figure 3-6: Example of a Camel route written using the Java domain specific language 

 
We refactored the Chimera codebase defining three main Camel components: 

▪ The Chimera graph component is designed to perform operations on RDF graphs, 
including reading and serializing RDF data in multiple formats (such as Turtle, 
RDF/XML, and N-Triples). In Chimera, RDF graphs act as abstractions for diverse 
RDF data sources, each optimized for specific use cases: 

o MemoryRDFGraph, A transient RDF graph stored only in memory. 
o NativeRDFGraph, An RDF graph persisted on disk, backed by a specific 

filesystem. 
o HTTPRDFGraph, Enables Chimera to connect to an RDF graph hosted on 

a remote triplestore. 
o InferenceRDFGraph, An RDF graph that incorporates inference 

capabilities for reasoning tasks. 
o SPARQLEndpointGraph, An RDF graph accessible through a SPARQL 

endpoint. 
 
Over these RDF graphs, the Chimera graph component defines a series of 
operations. 

o GraphGet, initializes one of the RDF graph types to be used in a Camel 
route 

o GraphAdd, adds RDF triples to an RDF graph 
o GraphInference, performs inference to generate new data based on 

existing graph data 
o GraphSparqlSelect, runs a SPARQL select query on an RDF graph 
o GraphConstruct, generates triples to be added to an RDF graph via a 

SPARQL construct query 
o GraphSparqlAsk, runs a SPARQL ask query on an RDF graph 
o GraphShacl, performes validation of an RDF graph via SHACL18 shapes 
o GraphDetach, severs the connection between the RDF graph and an RDF 

data source or clears part of, or all triples from a graph 
o GraphDump, writes and RDF graph to a file in a specific RDF format 

 
▪ The Chimera mapping-template component is a Camel component wrapper 

around the mapping-template library19 discussed in Section 3.1.1.1, making it 
accessible for data conversion and mapping operations within Camel. In a Camel 
route, it is used to convert an incoming input according to a set of declarative 
mapping rules, defined using the MTL, that should be provided as part of the 
component configuration. 

 
18 https://www.w3.org/TR/shacl/ 
19 https://github.com/cefriel/mapping-template 
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▪ The Chimera RML component serves a similar purpose as the mapping-template 
component but allows the usage of mappings written in RML by wrapping a 
forked version of the rmlmapper20 library.  

 
As summarized in Figure 3-7, a DataOps pipeline can be configured by integrating and 
configuring within a Camel route: (i) existing Camel components, (ii) Chimera 
components, (iii) custom components defined for specific integration scenarios. 
Additional details on the design of the A3.5 are reported in D3.1. We discuss the main 
modifications introduced in the implementation work for A3.5 within Section 3.2.1.2, 
and we discuss examples of pipelines developed for SmartEdge in Section 3.3. 
 

 
Figure 3-7: Overview of a DataOps pipeline integrating different components 

 

3.1.2 Final Design of the DataOps Deployment Templates (A3.6) 
 
Given a DataOps pipeline, a deployment strategy should be selected considering the 
constraints for its deployment. Different options may be evaluated, depending on the 
nodes involved in the mediated data exchange, such as the machine hosting a certain 
node or the possibility of modifying the node's code to be executed. 
 
For this reason, we investigated the alternative options for executing Apache Camel 
integrations to enable flexibility in deploying DataOps pipelines both on Edge devices 
and in the Cloud. The implementation of A3.6 focused on the definition of reusable 
templates to facilitate the deployment of pipelines in different environments. 

We identified the following deployment alternatives for a DataOps pipeline: 

1. Library: A DataOps pipeline can be integrated within a Java Project by importing 
Apache Camel and Chimera as dependencies and thus integrating the execution 
of a DataOps pipeline within the already existing source code of a swarm node. 
In this case, the deployment depends on the parent project integrating the 
DataOps pipeline. 
 

2. JAR Files: JAR files are self-contained executables (Java Archive) that encapsulate 
all the necessary components for running a DataOps pipeline. This makes them 

 
20 https://github.com/cefriel/rmlmapper-cefriel 

https://github.com/cefriel/rmlmapper-cefriel


D3.2 First implementation of tools for CSI SmartEdge GA 101092908 
 

40 
 

highly portable and suitable for a wide range of devices that can run a Java 
runtime. JAR files can be deployed on various platforms, including desktops, 
servers, and cloud environments. They offer a high degree of flexibility and can 
be integrated with different systems and frameworks. Different runtime can be 
selected to build and package JAR files for executions: 
▪ Camel Core: basic runtime for Camel applications. Can be used in applications 

where lightweight pipelines should be defined without the need for a larger 
framework supporting many dependencies.  

▪ Spring for Camel: Camel's Spring integration allows Camel routes to be 
configured within a Spring-based application, thus leveraging Spring’s 
dependency injection, lifecycle management, and configuration. Moreover, 
Camel offers Spring Boot compliant components to facilitate the automatic 
integration of pipelines within Spring applications. 

▪ Quarkus: a Java framework designed to start up quickly applications by 
implementing specific optimisations and configurations at build time. 
Quarkus is optimized for low memory usage, making it suitable for resource-
constrained environments, serverless environments and microservices 
architectures. Java libraries should be adapted as Quarkus extensions21 to 
enable their usage within Quarkus projects. 

JAR Files for a DataOps pipeline can be deployed within a node equipped with a 
JVM or as a dedicated node implementing a mediation service. 

 
3. Containerization: To further enhance portability and scalability, JAR files can be 

packaged as OCI (Open Container Initiative) containers using different Java 
Virtual Machines (JVMs), such as OpenJDK or Oracle JDK. This allows for efficient 
deployment and management in containerized environments like Docker and 
Kubernetes. A DataOps pipeline may be packaged as a standalone container or 
integrated within the container executing code for a certain node. 

 
4. Native Executable (GraalVM): GraalVM is a high-performance Java runtime that 

offers ahead-of-time (AOT) compilation. This enables the compilation of DataOps 
pipelines as native binary executables before deployment, eliminating the need 
for a JVM at runtime. Native executables generated by GraalVM are typically 
smaller and have faster startup times than JAR files. This makes them ideal for 
resource-constrained devices and applications that require quick response 
times. Native executables can have a smaller memory footprint than JAR files, 
especially when used on embedded or IoT devices. This can improve 
performance and reduce resource consumption. GraalVM can generate native 
binaries for specific platforms, such as Linux, Windows, and macOS. This ensures 
optimal performance and compatibility for the target environment. Native 
executables can be generated for the different frameworks discussed above: 
Camel Core, Spring for Camel, Quarkus. Native executables for a DataOps 
pipeline within a node or as a dedicated node implementing a mediation service. 

 

 
21 https://quarkus.io/guides/writing-extensions 
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5. Kubernetes: If a Kubernetes environment is available either on a single device or 
as a deployment environment for multiple nodes composing the swarm, 
DataOps pipeline(s) can be deployed using different approaches: 

• Sidecar container22: a Docker container running a DataOps pipeline can be 
executed within a Pod deployed for a node as a sidecar container;  

• Service: A Docker container running a DataOps pipeline can be executed as a 
dedicated Kubernetes Pod and exposed as Kubernetes services. This enables 
scaling the number of replicas and the automatic load balancing of requests. 

• Apache Camel K: a subproject of Apache Camel explicitly designed for 
running pipelines in Kubernetes-based environments. It can be used to 
simplify the deployment of DataOps pipelines for use cases involving cloud-
native and serverless architectures. One of the core innovations introduced 
by Camel K is the concept of Kamelets (Kamel route snippets), which are 
reusable integration templates that provide an abstraction to encapsulate 
pipelines for specific integration tasks (like accessing data from a certain 
node in a specific format). 

• K-Native: a Kubernetes-based platform to deploy, manage, and scale 
applications. It can be employed to manage a Camel K deployment of 
DataOps pipelines in a serverless manner. In particular, K-Native enable 
automatic scaling of the pipelines23 , allocating more computing resources to 
pipelines with increasing workloads and allowing scale-to-zero to pipelines 
not receiving requests.  

 
Table 3-1 updates the analysis reported in D3.1 on the pros and cons of the different 
deployment alternatives identified. 
 

Table 3-1: Analysis of PROs and CONs for different deployment alternatives 

Deployment  Pros Cons 

Library 

• Integrated execution (e.g., 
exchange over the network is 
not required) can lead to better 
performance. 

• Requires modification to the 
source code. It is only possible if 
the codebase is in Java. 

JAR file 

• Easy to build. 

• Easy to deploy to a device, 
everything necessary is 
contained in the JAR. 

• [Quarkus] Really low memory 
footprint and fast start-up. 

• Requires the device to run Java. 

• [Quarkus] Not all the Java 
libraries support Quarkus. 

Containerizatio
n 

• JVM and needed dependencies 
are packaged as a single 
artefact. 

• Requires a container runtime to 
execute it. 

• Image selected for the container 
may introduce overhead in 
resource usage w.r.t. direct 
execution. 

 
22 https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/ 
23 https://knative.dev/docs/serving/autoscaling/ 
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Native 
Executable 

• Does not require the device to 
run Java. 

• Faster start-up and execution 
times than a JAR file. 

• Creating a native binary 
demands more CPU power and 
RAM compared to building a JAR 
file. 

Kubernetes 

• Replication and auto-scaling are 
supported by Services in 
Kubernetes. 

• [Kamelets] Allow an even easier 
re-use of routes inside of a 
larger integration. 

• [K-Native] Serverless approach 
enables scale-to-zero to save 
resources, and scalability via 
replication for high traffic loads. 

• It only makes sense in the 
context of a Kubernetes 
deployment. 

• [Kamelets] Limitations on the 
structure of kamelets for reuse. 

• [K-Native] Management of 
dependencies should be 
handled to enable execution of 
pipelines including custom 
components. 

 
Figure 3-8 provides an overview of the deployment templates (A3.6) identified for a 
DataOps pipeline. 
 

 
Figure 3-8: DataOps Deployment Templates 

 
The majority of the deployment templates are made available for the first release as 
described in Section 3.2.2. For the second release, we will further extend the list of 
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available templates by focusing on Camel-K 24  and Knative 25  for Cloud deployment 
environments and on Quarkus for Edge environments. 

3.1.3 Final Design of Low-code DataOps Configuration (A3.7) 

The objective of artefact A3.7 is to support easy and low-code implementation of 
DataOps pipelines for enabling mediated data exchanges between nodes in the swarm. 
The low-code approach adopted for the definition of DataOps pipelines simplifies 
application development by emphasizing configuration over manual coding. The overall 
objective is to enable a declarative configuration of components so that users can 
reduce the need to implement custom solutions. 
 
For the DataOps tool, the choice of adopting the Apache Camel framework enables the 
definition of data integration pipelines using the abstraction of Routes as a composition 
of building blocks. This abstraction empowers a no-code approach to data integration, 
as it exposes all available functionalities of Camel components through well-
documented URI parameters, which users can configure when creating a route. This 
approach also means that modifying the data integration pipeline doesn't necessitate 
rebuilding the entire software artefact that executes Camel routes; it only requires 
changes to the file where the route is declared. To enable this configuration over code 
approach, routes can be defined using several domain-specific languages (DSL), with the 
most prominent options being XML, Spring XML, and YAML. 
A declarative approach also enables the definition of mapping rules, as discussed in 
3.1.1, that can then be provided as input to the relevant components within a Route.  
 
To streamline the definition of a Route, we investigated Apache Camel Karavan26 that 
provides a graphical user interface as a plugin for Visual Studio Code to configure a Route 
without writing code. This graphical approach significantly eases the process of route 
definition, as it avoids syntax and logical errors that may happen when manually writing 
a route in a text file. Karavan supports all the components officially included in the 
Apache Camel Framework, that can be reused within a pipeline defined using the tool. 
A pipeline configured in Karavan can be automatically exported as a Java project for 
execution. 
 
Additionally, Karavan supports predefined and custom Kamelets27, which are reusable 
route templates designed to simplify route construction. Kamelets let users define 
parameterized routes using the YAML DSL, streamlining the process by hiding 
unnecessary details. A Kamelet can either be a Source, that produces data and can then 
send it to another component that is passed in as a parameter or as a Sink, that receives 
data from a component passed in as a parameter another fixed component defined in 
the Kamelet. An example Source Kamelet can be seen in Figure 3-9. This example 
Kamelet demonstrates how this approach can be used within DataOps pipelines to reuse 
integrations to access or forward data to a certain node. The Kamelet shown in the 
snippet, sends an HTTP request to check the status of a swarm node at regular intervals 

 
24 https://camel.apache.org/camel-k/2.2.x/index.html 
25 https://knative.dev/docs/ 
26 https://github.com/apache/camel-karavan 
27 https://camel.apache.org/camel-k/2.5.x/kamelets/kamelets.html 
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and processes the response. The user reusing this Kamelet will only need to configure 
the kamelet:sink to define the remaining part of the pipelines. If available, another 
Kamelet may be reused also for the sink. 
 

 
Figure 3-9: Example source Kamelet that is used to read the status of the swarm and then forward it to a target 

node 

To integrate this tool into the DataOps toolbox and enable the use of Chimera 
components in a no-code manner, we worked on improving Chimera’s compatibility 
with the Apache Camel framework. This has been done by introducing the concept of 
ChimeraResources, a general approach to handling different resource types in the 
various Camel DSLs and changes to the parameters defined by the various Chimera 
components. The technical details of these changes are described in Section 3.2.1.2.2 
and Section 3.2.3. 
Some usability challenges remain due to the unofficial status of Chimera components. 
Indeed, a default installation of the Karavan plugin lacks the necessary metadata for 
enabling the definition and automatic export of a pipeline using DataOps components. 
Section 3.2.3 discusses how we addressed these aspects for the first release. However, 
this still requires manual steps from the user, which we seek to eliminate. We will 
investigate how to improve these aspects in the second release by focusing on the 
possibility of defining and reusing custom Kamelets in Karavan. Finally, we plan to 
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develop a set of Kamelets specific to the project’s needs and make them available 
through the Karavan catalog, making their reuse easier. 
 
We also performed an examination of Kaoto28, a tool comparable to Camel Karavan and 
developed by RedHat, for potential adoption but we discarded it for the moment since 
it cannot support custom Camel components as the ones defined for the DataOps 
pipelines. 

3.2 FIRST IMPLEMENTATION 
 
This section discusses the artefacts implemented for the first release of the DataOps 
Toolbox and how they support their final design. Open-source components adopted for 
implementing the SmartEdge artefacts are referenced as Git submodules within the 
public SmartEdge repository on Gitlab29. 
Specific developments for the SmartEdge use cases (e.g., the pipelines discussed in 
Section 3.3) are kept within the SmartEdge private repository30. 
 

3.2.1 First Implementation of the DataOps Pipeline Components (A3.5) 
 
The first implementation of the DataOps Pipeline Components is discussed considering 
developments for the mapping-template component and the overall Chimera 
framework. Finally, we report an initial performance and scalability evaluation of the 
mapping-template against other RML-based processors. 

3.2.1.1 Mapping Template Component 
 
Considering the mapping processors made available as DataOps components for A3.5, 
we focused on improvements for the mapping-template library and the corresponding 
component in Chimera (Mapping Template Component). We developed this approach 
as an alternative to the well-known RML mapping processors, taking into account 
requirements from SmartEdge: (i) address specific mapping rules that are difficult to 
express with the fully-declarative syntax and targeting a generic output, (ii) facilitate the 
definition of mapping rules by users that are not familiar with RDF, (iii) address 
performance and scalability transformations for runtime message conversion and 
considering resource-constrained devices. 
 
As a result of the workflow for a generic mapping process discussed in the design of 
A3.5, we reviewed the definition of mapping rules in the mapping-template31 library and 
we defined a Mapping Template Language 32  (MTL) to provide specification of the 
intended usage. We also developed examples to compare MTL with RML-based mapping 
languages and help users adopt the tool33. These examples were also used to perform a 

 
28 https://kaoto.io/ 
29 https://gitlab.com/smartedge-project-eu/smartedge-public/-/tree/main/dataops  
30 https://gitlab.com/smartedge-project-eu/SMARTEDGE  
31 https://github.com/cefriel/mapping-template  
32 https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)  
33 https://github.com/cefriel/mapping-template/tree/main/examples  

https://gitlab.com/smartedge-project-eu/smartedge-public/-/tree/main/dataops
https://gitlab.com/smartedge-project-eu/SMARTEDGE
https://github.com/cefriel/mapping-template
https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)
https://github.com/cefriel/mapping-template/tree/main/examples
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qualitative evaluation of MTL's expressiveness against the requirements for mapping 
languages for knowledge graph construction [Scrocca24]. 
 
Finally, we implemented additional features to enable the tool's use in additional 
scenarios and we added support for the direct execution of RML mappings via the 
mapping-template. 
 

3.2.1.1.1 Mapping Template Language (MTL) 
 
MTL is the defined language to declaratively specify data and schema transformation for 
a mediated data exchange within a DataOps pipeline.  
 
The core components enabling the Mapping Template Language (MTL) are Readers and 
Data Frames. Readers are format-specific objects used to load input data for mapping, 
while Data Frames provide a flat, tabular view of that data extracted by format-specific 
query languages known as reference formulations. Each type of data format has a 
dedicated Reader (e.g., CSVReader for CSV files, JsonReader for JSON, etc.). Once input 
data is loaded by a Reader, it is transformed into a Data Frame using a reference 
formulation, which extracts data into a tabular structure. This implementation supports 
the second step of the generic workflow for knowledge conversion, i.e., the Data Frame 
Extraction.  For example, hierarchical JSON data is converted into a Data Frame using 
JsonPath expressions; similarly, XML uses XQuery, RDF uses SPARQL to achieve this 
tabular format. 
 
Once the data is available in a Data Frame, it can be manipulated (Data Frame 
Manipulation in the workflow) by combining it with other data frames or applying data 
transformations. For enabling this, we implemented in the mapping-template a set of 
convenience functions accessible via the $functions variable in a MTL template. These 
include various string operations, such as replacement and hashing, but also join 
operations between Data Frames. To support a wide range of mapping applications, MTL 
allows users to extend functionality by adding custom Java functions, which can be 
loaded and used within mappings. 
 
To enable the Mapping Execution step of the workflow, the MTL follows a template 
approach by allowing the user to express the structure that the output data must follow 
and how the data from Data Frame(s) should be bound to it. This is shown in the 
mapping in Figure 3-10 which reads XML data and outputs the data in RDF Turtle format 
shown in Figure 3-11. 
 
The mapping in Figure 3-10 demonstrates the key features of the MTL language and how 
it integrates the template language of the Apache Velocity library (VTL). The initial lines 
define RDF prefixes for the output, which are written exactly as specified, since they are 
neither directives nor variables. The #set directive assigns a value to the $query variable, 
which contains an XQuery query. In the MTL language, directives are denoted by a 
leading ‘#’ while variables are denoted by a leading ‘$’. Since the input data is in XML 
format, XQuery serves as the reference formulation, and the $reader is an XMLReader. 
Together, the Reader and query extract data to create a Data Frame, which is then used 
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to generate the RDF Turtle output. In the final part of the mapping, a loop iterates over 
the Data Frame, highlighting MTL’s template-based approach. Fixed elements, such as 
the rdf:type literal, are written directly to the output, while expressions like $stop.busId 
are evaluated based on the current iteration. 
 

 
Figure 3-10: MTL mapping to convert XML data to RDF Turtle 

  

 
Figure 3-11: XML input data and corresponding RDF Turtle representation obtained by applying the mapping 

template 

 
The workflow's Data Source Reading and Data Sink Writing steps are only partially 
supported through the MTL for execution via CLI. We chose to decouple these steps to 
reduce the necessity of incorporating multiple external libraries into the mapping-
template library. This decision was made with the expectation that the tool could be 
seamlessly integrated with existing Extract-Transform-Load (ETL) tools, offering various 
production-ready data connectors right from the start. In this direction, the integration 
with Chimera guarantees support for the declarative definition of DataOps pipelines 
leveraging Camel components and MTL to implement the full workflow. Examples are 
discussed in Section 3.2.3. 
 

3.2.1.1.2 Additional features implemented 
 
To support the new MTL specification, we modified the library accordingly. Currently, 
Reader implementations are made available to extract data frames for heterogeneous 
input data sources: CSV, JSON, XML, RDF, SQL databases (specifically PostgreSQL and 
MySQL). Moreover, we defined additional functions exposed via MTL to combine and 
manipulate data frames, e.g., join operations. 
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As an additional feature to facilitate the implementation of complex integration 
requirements within a DataOps pipeline, users can now refer to multiple input sources 
via MTL that are then accessed by providing multiple Readers to the mapping-template 
library. This feature eliminates the need to define individual mappings for each data 
source. It is useful for complex mappings that depend on multiple, potentially dynamic, 
data sources, e.g., data coming from different nodes within a swarm. While it was 
previously possible, doing so required the user to know both the type and location of 
each data source in advance when writing the mapping file, limiting flexibility at design 
time. This constraint was manageable for static or batch processes, where input data 
remains constant and is converted only once. However, it hampers template reusability, 
as users must manually update templates to accommodate new or different data 
sources. An example of this can be seen in the MTL mapping snippets in Figure 3-12. In 
the top part of the figure, we can see that the user must specify both the type of data 
that needs to be loaded, in this case, CSV, and the location of the data file. This means 
that should the file location change, the mapping should also be changed, limiting 
reusability as the mapping ideally should be concerned with just the data conversion 
aspect. In the bottom part of the picture the new functionality is shown, where the 
Readers used in the mapping are supplied externally and are not defined in the mapping 
itself. 
 

 
Figure 3-12: On top, an example of defining multiple readers statically within a mapping. 

On the bottom, the new possibility of providing multiple readers dynamically from outside the mapping. 

 
This new capability is designed to work in the context of a DataOps pipeline by 
leveraging the Chimera Mapping Template component. In this context, conversions are 
more dynamic, and often, externally supplied data inputs need to be adapted. By 
contrast, the conversion remains a one-time batch process when using the mapping-
template component as a standalone application.  

3.2.1.1.3 Support for RML mappings 
 
Building on the work done on the generic workflow for knowledge conversion and on 
the previously introduced enhancements, we implemented the capability to execute 
RML mappings in the mapping-template library automatically. 
 
This functionality enables users to leverage existing RML mappings by translating them 
into MTL syntax, providing the capability to: 

▪ leverage the mapping-template as an RML mapping processor, or  
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▪ adapt the generated MTL file for finer control over the output or to introduce 
optimisations.  

 
Notably, the translation from RML to MTL is implemented via MTL, showcasing the 
alignment of the mapping-template solution to the approach for declarative knowledge 
graph construction adopted by RML. Despite being a not trivial effort, implementing this 
feature required much less work with respect to the definition of an RML mapping 
processor from scratch. 
 
The MTL mapping generated from this process produces an equivalent output to the 
one generated by original RML mapping. The template parses the data from the data 
sources specified in the RML mappings and applies the same mapping rules.  
 

 
Figure 3-13: MTL to RML transformation process 

 

 
Figure 3-14: An example RML mapping (above) and the corresponding automatically generated MTL mapping 

(below). 
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This process is shown in Figure 3-13, with a comparison of the original RML and the 
resulting MTL shown in Figure 3-14. As can be seen, the automatically generated MTL 
mapping is meant to be used by the library and not the user. As such it is not human 
readable, and the automatically generated variable names are randomly generated and 
assigned to avoid naming collisions. The user is, however, free to manually edit the 
resulting MTL mapping and introduce possible optimizations which rely on external 
knowledge not present in the original RML mapping. 
 
The mapping template is currently compliant with the rml-core specification 
(https://w3id.org/rml/portal) and the execution against all the rml-core test cases is 
reported and documented online34. The RML mapping can be passed with a specific 
option for usage via CLI and a test case is made available to exemplify the usage as a 
library. 
 
For the second release, we will investigate the possibility of improving the compiler from 
RML rules to MTL by evaluating the support for additional RML modules35 (e.g., RML-CC 
and RML-star) and the automatic definition of DataOps pipelines for accessing data 
sources and targets defined via RML-IO.  

3.2.1.2 Chimera 
 
The Chimera framework36 has seen numerous improvements to support the first release 
of DataOps pipeline components (A3.5). In particular, aiming at increasing the 
Technology Readiness Level (TRL) and enhancing its compatibility with Apache Camel. 

3.2.1.2.1 Component operations and parameters 
 
Apache Camel components use a configuration-over-code approach, allowing users to 
set parameters that define the component's behaviour within a Camel route. Although 
this approach minimizes the need for custom code, it can be confusing for users because 
not all parameters are compatible, and some combinations can lead to invalid 
configuration states.  
 
To address this, we refactored Chimera as a set of Camel components associated with a 
set of specific operations that a user should explicitly configure for execution within a 
DataOps pipeline. This explicit configuration makes the component’s functionality 
clearer for users. Additionally, on the backend, we redesigned the code to eliminate 
invalid configuration states 37  entirely, following principles inspired by functional 
programming and ML-style languages. We achieved this by using Java Records and 
Sealed Interfaces, features introduced in Java 14 and 17 respectively, to enforce these 
constraints in a robust and expressive way.  
 
As an example, the GraphGet operation is used to create an RDFGraph and this 
RDFGraph can be of different types, described in Section 3.1.1.2 depending on the 

 
34 https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024/track1  
35 https://w3id.org/rml/portal  
36 Chimera v4.1.1, https://github.com/cefriel/chimera  
37 https://fsharpforfunandprofit.com/posts/designing-with-types-making-illegal-states-unrepresentable/ 

https://w3id.org/rml/portal
https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024/track1
https://w3id.org/rml/portal
https://github.com/cefriel/chimera
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provided component configuration. Certain configuration parameters, such as the 
ServerUrl option which can be provided to create an HTTPRDFGraph do not make sense 
when used in conjunction with the PathDataDir which must be set to create a 
NativeRDFGraph. Apache Camel does not stop the user from providing both options, 
which would lead to an undefined configuration state. By controlling the validity states, 
we can detect the issue and inform the user that the configuration provided is invalid. 

3.2.1.2.2 External Resource Access 
 
To further simplify user configuration of DataOps pipelines, we introduced 
ChimeraResourceBeans. A resource represents any data source required for an 
operation. For example, in the Graph Add operation, RDF triples are added from a file to 
an RDF graph. Here, the RDF file containing the triples is the resource. However, a 
resource can also be a remote file that may require authorized access.  
To handle this variety of resources flexibly and intuitively, ChimeraResourceBeans were 
designed to define key details such as an access URL, serialization format, and, 
optionally, an authentication method. The access URL could be a local file path (e.g., 
file://someFile) or a remote address (e.g., https://someRemoteResource), which 
indicates both the type of resource and the access mechanism. This approach aligns with 
Apache Camel's use of URIs and URLs, providing a consistent experience.  
 
As an example, Figure 3-15 shows a ChimeraResourceBean that is used to access a file in 
the RDF Turtle format that is stored locally. 
 

 
Figure 3-15: Example of a ChimeraResourceBean defined using XML 

ChimeraResourceBeans have been integrated into all three Chimera components and 
are now the main way to access resources. An example of usage of a 
ChimeraResourceBean can be seen in Figure 3-17, where it is used to provide a SPARQL 
query to the graph component SPARQL select operation.  
 

3.2.1.2.3 Additional Graph Component features 
 
The Chimera Graph Component was enhanced to include two new operations, SPARQL 
SELECT and ASK queries, needed to implement DataOps pipelines that dynamically 
access RDF repositories such as the SmartEdge Knowledge Graph Repository (A3.3). 
SPARQL SELECT queries retrieve specific data from an RDF graph by allowing users to 
define the exact pattern of triples they need, effectively pulling detailed information 
from datasets. SPARQL ASK queries, on the other hand, simply check whether a 
particular pattern exists in the graph, returning a boolean result to confirm its presence 
or absence. Examples for these types of queries are shown in Figure 3-16, on top a 
simple select query that pattern matches all the subject, predicates and objects and 
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returns all triples while on the bottom an ask query that returns ‘true’ if there exist a 
?person which is of type Author that hasWritten a specific Book1. 
 

 
Figure 3-16: An example SPARQL SELECT and ASK query 

The SPARQL select operation can be configured to retrieve the query results in different 
formats, these being JSON, XML, CSV and TSV. If no output format is chosen, then the 
result is kept in memory in for further processing. The result of SPARQL ask queries is 
always a Java Boolean value, either true or false. An example route showing the SPARQL 
select operation is shown in Figure 3-17, where an in-memory RDF graph is obtained, 
triples are added to it and then a SPARQL select query is performed and the result 
returned as JSON. As explained in the previous paragraphs, all resources, RDF triples and 
the SPARQL select query are passed in as ChimeraResourceBeans. 
 

 
Figure 3-17: Example Chimera route that performs a SPARQL select query and returns the result as JSON 

Additionally, the Chimera graph component has been enhanced to support handling 
multiple RDF named graphs simultaneously. This upgrade significantly expands 
Chimera’s data handling capabilities by enabling the retrieval of results across multiple 
graphs in a single query. This feature was implemented to address the common practice 
of storing different types of information in separate RDF named graphs, e.g., in A3.3, the 
storage of nodes description as separate graphs. SPARQL queries now by default 
consider all the named graphs provided by the user to be part of the same RDF default 
graph. This behaviour is not defined by the RDF and SPARQL specifications and is 
something that is left to the specific triplestore implementation38. Users are still able to 
query specific graphs by either specifying them in the SPARQL query or by specifying 
which named graphs should be considered when creating the RDFGraph through the 
GraphGet operation. 
 
Finally, in handling these cases and using multiple RDFGraphs in the same pipeline we 
fixed an inconsistency in behaviour in the underlying HTTPRepository, depending on the 

 
38 https://blog.metaphacts.com/the-default-graph-demystified 
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remote Triplestore implementation, and MemoryRepository, implemented by the RDF4J 
library. These objects had an undocumented difference in their behaviour when pattern 
matching values specified in the SELECT clause of a SPARQL query does not find a match 
in the graph. In the first case, the unmatched values will be returned with a null value, 
indicating that no match was found. In the second case, those unmatched values will be 
completely skipped. This led to a difference in results when performing the same query 
on the same graph content but on different repository types. Because of this, non-
matching values are excluded, meaning that the HTTPRepository behaviour is applied 
also to the other Repository types, leading to consistent results. 
 

3.2.1.2.4 Additional Mapping Template Component features 
 
The Chimera Mapping Template component has been enhanced in a similar way to the 
Graph component, with improvements focused on simplifying user configuration and 
streamlining resource usage via ChimeraResourceBeans. Additionally, users now have 
the capability to integrate custom Java functions for data transformations into their 
mappings. Previously available through the mapping-template library, this functionality 
is now accessible directly within the Chimera Mapping Template component using 
ChimeraResourceBeans. This feature is particularly useful when custom functions are 
required, such as geolocation functions for coordinate system conversions that are not 
included in the standard Java library. 

3.2.1.2.5 Overall improvements 
 
For all Chimera components, additional unit tests have also been implemented to 
enhance the robustness of the Chimera graph, mapping-template, and RML 
components. These tests ensure consistent functionality and help prevent regressions 
during development, providing greater stability and reliability in these components. 
 
Chimera was upgraded to version 4.4.1 of Apache Camel, the latest available at the time, 
to leverage recent improvements in the Camel framework. The Chimera tutorial39 was 
also updated to showcase example pipelines that utilize these components, streamlining 
user onboarding.  
 
Finally, following a structured semantic versioning process, we developed the required 
mechanism to make each release available on Maven Central, simplifying reuse and 
integration in other projects. Thanks to the availability of components on Maven, their 
improved integration with the Camel ecosystem, the extensive documentation, and the 
tutorial, it is now much easier for users to re-use the DataOps pipeline components. Of 
course, each component can also be used independently and applied to heterogeneous 
data integration needs that differ from those investigated within the SmartEdge project. 
 

 
39 https://github.com/cefriel/chimera-tutorial 
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As a measurement of the effectiveness of the new developments, the Chimera 
repository almost doubled the number of GitHub stars40 from external users interested 
in the project from 14 to 27 since the beginning of the SmartEdge project. 
 

3.2.1.3 Mapping Template Performance and Scalability Evaluation 
 
To evaluate the performance and scalability of the Mapping Template component, we  
performed an evaluation considering state-of-the-art benchmarks from the Knowledge 
Graph Construction (KGC) Community Group41. The usage of well-known benchmark 
allowed us to compare our tool with existing mapping processors implementing a 
declarative approach for data and schema transformations to RDF. We report here the 
primary outcomes of the evaluation performed. Complete details of the experiment 
performed, and related visualizations can be found in Annex II (Section 8). 
 
The main result is that the designed and implemented approach for generic knowledge 
conversion maintains performance levels comparable to leading mapping processors for 
RDF graph construction tasks and can outperform them in specific scenarios. This 
advantage is mainly attributed to the efficient operation of the template engine and the 
possibility offered by MTL of introducing custom optimizations in mapping rules. On the 
one side, this aspect guarantees very good performance in specific scenarios like the 
ones addressed in SmartEdge, i.e., service mediation with small messages to be 
converted quickly. Conversely, the template engine is a sort of black box that prevents 
a more granular memory consumption optimization. 
 
These tests could not be used to assess the KPIs 2.2 (execution time) and 2.3 
(concurrency of requests) defined in SmartEdge for mediated data exchanges (service 
mediation use case). Indeed, benchmarks from the KGC community do not properly 
address these scenarios. For this reason, we performed additional tests, reported in 
Section 3.3.1, that address the KPIs by defining a DataOps pipeline developed specifically 
for a SmartEdge use case. We will work to enhance the performed evaluation for the 
second release and investigate the definition of a structured benchmark for dynamic 
data that considers the metrics assessed in SmartEdge for KPI 2.2 and 2.3. 
 

3.2.2 First Implementation of the DataOps Deployment Templates (A3.6) 
 
For this first release, we defined a first set of deployment templates from the ones 
identified for a DataOps pipeline. Then, we implemented demonstrator Java projects 
executing a DataOps pipeline that could be used to exemplify and test the different 
deployment templates. The DataOps deployment templates and the demonstrator 
pipelines are made available and documented online to make them easier to reuse 42. 
 

 
40 https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars  
41 https://www.w3.org/community/kg-construct/  
42 https://github.com/cefriel/chimera-deployment-templates 

https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://www.w3.org/community/kg-construct/
https://github.com/cefriel/chimera-deployment-templates
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A set of deployment template is defined to build the pipeline as a JAR and package it 
into a lightweight OCI container43 by leveraging a multi-stage build44. A multi-stage build 
leverages an appropriate base image with all the required dependencies to execute the 
build and then copies the generated JAR within a base image containing the minimum 
set of dependencies to execute it. This ensures the optimisation of the final OCI 
container. We make two deployment templates of this type available considering two 
open-source Java Virtual Machines (JVMs): Temurin JVM and the alternative GraalVM 
Community JVM. The same approach defined in the Dockerfile for the multi-stage build 
can be used to run the JAR locally without containerization, assuming all the necessary 
dependencies are installed. 
The obtained container can be executed on a container runtime and a container 
orchestrator like Kubernetes. We provide as part of the deployment templates the 
required Kubernetes manifests to execute the container as a Service45 with potentially 
multiple replicas. 
Additionally, we implemented a deployment template to run a DataOps pipeline as a 
native executable, thus not requiring a JVM installation on the host.  

3.2.2.1 Deployment Templates Description 
 
The deployment templates are exemplified by considering two distinct Camel 
applications that were developed for demonstration purposes: minimal-chimera-app46 
and minimal-chimera-spring-app47. Each application initializes the Camel context and 
executes a basic DataOps pipeline defined using the Camel Java DSL48. The primary 
distinction between the two applications lies in their underlying framework 
compatibility. The first is a standalone Camel application, operating independently of 
any external dependency injection framework. The second application, however, has 
been engineered to integrate with the Spring framework seamlessly. We did this test to 
assess the potential drawbacks from a deployment perspective of adopting an 
overarching framework such as Spring to execute the DataOps pipeline. 
 
The considered pipeline, shown in Figure 3-18, is responsible for orchestrating a 
mediated data exchange from its source to its destination while applying a series of data 
and schema transformations. The steps performed are: 

▪ Read a local file containing raw JSON data 
▪ Execute a lifting process using the Mapping Template component to transform 

the data read to RDF format 
▪ Execute a lowering process using the Mapping Template component to 

transform the RDF to a harmonized JSON file 
Both the lifting and the lowering operations are configured via appropriate 
ChimeraResourceBeans referencing the mapping rules to be executed. 

 

 
43 https://opencontainers.org/  
44 https://docs.docker.com/build/building/multi-stage/  
45 https://kubernetes.io/docs/concepts/services-networking/service/  
46 https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-app 
47 https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-spring-app 
48 MyRouteBuilder.java 

https://opencontainers.org/
https://docs.docker.com/build/building/multi-stage/
https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-app
https://github.com/cefriel/chimera-deployment-templates/tree/main/minimal-chimera-spring-app
https://github.com/cefriel/chimera-deployment-templates/blob/main/minimal-chimera-app/src/main/java/com/cefriel/MyRouteBuilder.java
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The second application contains the same configuration as the first one but takes 
advantage of Spring's powerful dependency injection mechanism to handle Camel 
context and Chimera pipeline dependencies. 
 
Three different deployments templates have been defined for both the core and the 
spring version of the minimal chimera application, which differ in terms of the docker 
image used and the type of build: 

▪ Temurin49: Minimal chimera app (Core and Spring) built with JVM and running 
on Temurin-17 docker image 

▪ GraalVm50: Minimal chimera app (Core and Spring) built with JVM and running 
on GraalVm-17 docker image (community edition) 

▪ Native51: Minimal chimera app (Core and Spring) app native-built with GraalVm 
JDK 17 and running on Alpine docker image  

 
The deployment templates repository is organized into three primary folders: Temurin, 
GraalVM, and GraalVM-Native. Each folder contains two subfolders: example and 
example-spring. These subfolders provide Dockerfiles and Docker Compose 
configurations for building and running Java applications using the respective runtime 
environments. To build and to run the images from the source code, it is possible to 
navigate to example folder of the specific case and use the following docker commands: 
 

docker-compose build 

docker-compose up 

 
For example, to run the Temurin image of the core version, it is possible to navigate to 
the folder chimera-deployment-templates/Temurin/example and execute the two 
commands listed above. This folder contains the docker-compose, which uses a 
Dockerfile located in the same folder to execute a multi-stage build of the application 
minimal-chimera-app. 
 

 
49 https://github.com/cefriel/chimera-deployment-templates/tree/main/Temurin 
50 https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVM 
51 https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVm-Native 

Figure 3-18: DataOps pipeline defined to demonstrate the deployment templates. 

https://github.com/cefriel/chimera-deployment-templates/tree/main/Temurin
https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVM
https://github.com/cefriel/chimera-deployment-templates/tree/main/GraalVm-Native
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We provide additional details for building Native images since it involves a slightly 
different process. For the Native case, the first stage uses a specific base image 
cefriel/native-builder:v17. This base image is just a "wrapper" that combines the 
required dependencies for building and running a native application built with GraalVM. 
It is based on the ghcr.io/graalvm/native-image-community:17 image, which is required 
for running a native executable and an `apache-maven-3.9.6` installation for executing 
the native build. We made available via DockerHub the cefriel/native-builder:v17 
image52 to simplify the build process using the provided Dockerfile. The Dockerfile also 
documents the operations for a user executing the same building process on a hosting 
machine without Docker.   
The native build is executed with a specific maven command: 

  
mvn -Pnative -Dagent=false -DskipTests package 
 

The advantage of this approach is that the resulting OCI container, generated using the 
multi-stage build, can leverage a minimal Docker image since in this case we do not need 
a JVM. An Alpine Linux's latest version is used as base image for running the native 
executable obtained as output of the first step of the build. 

3.2.2.2 Deployment Templates Comparison 
 
This evaluation compares the performance and resource utilization of the deployment 
approaches enabled by the templates and the DataOps pipeline discussed in the 
previous section. The comparison focuses on the following characteristics and metrics: 

▪ Template: Identifier of the DataOps Deployment Template 
▪ Framework: Framework used for the project 
▪ JVM: Java Virtual Machine (JVM) used for building and execution of the pipeline 
▪ Base docker image: Docker image used as base for executing the pipeline 
▪ Executable dimension (MB): size of the executable artefact obtained as output of 

the build process 
▪ Image Size (MB): size of the container generated for execution 
▪ Startup Time (ms): time to startup the Camel Context as measured by Camel 
▪ CPU %: average CPU percentage to execute the pipeline 
▪ Memory MB: average memory consumption to execute the pipeline 

 
Table 3-2 reports the metrics for each deployment template considered. 
 

Table 3-2: Comparison of deployment templates for the same DataOps pipeline 

Template Framework JVM Base  
docker image 

Executable 
Dimension 
(MB) 

Image 
Size 
(MB) 

Start 
Up 
Time 
(ms) 

CPU % Memory 
MB 

Temurin Maven Build+Execution 
Temurin 

eclipse-temurin:17 67(Jar) 528 168 0.15/1.5 128 

GraalVM Maven Build+Execution 
GraalVM 

ghcr.io/graalvm/jdk-
community:17 

67(Jar) 821 145 0.15/3  107 

Native Maven Build GraalVM 
+ Execution 
Without JVM 

alpine:latest 109(Binary) 224 17 0.03/0.9 30 

 
52 https://hub.docker.com/repository/docker/cefriel/native-builder  

https://hub.docker.com/repository/docker/cefriel/native-builder
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Spring 
Temurin 

Maven + 
Spring 

Build+Execution 
Temurin 

eclipse-temurin:17 140(Jar) 603 30 0.16/1.8 308 

Spring 
GraalVM 

Maven + 
Spring 

Build+Execution 
GraalVM 

ghcr.io/graalvm/jdk-
community:17 

140(Jar) 896 21 0.17/2.7 233 

Spring 
Native 

Maven  + 
Spring 

Build GraalVM 
+ Execution 
Without JVM 

alpine:latest 145(Binary) 295 1 0.03/0.9 56  

 
The results demonstrate the benefits of GraalVM native images in terms of improved 
resource efficiency and faster application execution. GraalVM images utilize slightly less 
resource than the one with Temuring JVM but have a higher image size. 
Projects using Spring generate a JAR of higher dimension and demonstrate optimal 
startup time, higher memory consumption and similar CPU usage. 
It should be noted that the Community Edition of GraalVM is less efficient than the 
enterprise edition53, therefore, the latter's usage is recommended if the user has a 
license. 
 
To further evaluate the different deployment templates, we performed additional 
testing in the context of the performance and scalability evaluation on the demonstrator 
DataOps pipeline defined for SmartEdge Use Case 2. These results are discussed in detail 
in Section 3.3.1. 
 

3.2.3 First Implementation of Low-code DataOps Configuration (A3.7) 
 
To support the low-code configuration of DataOps pipelines (A3.7), we made various 
adjustments to Chimera to simplify the configuration of the DataOps components, and 
we enabled the usage of Camel Karavan for pipeline configuration via a graphical 
interface. 

3.2.3.1 Simplify DataOps Pipeline Configuration 
 
For the first release, we focused on improving the integration of the Chimera 
components with the Apache Camel ecosystem and bringing the improvements made 
to the various components to the Apache Karavan tool. These main adjustments to 
facilitate the configurability of the DataOps components within a pipeline consist of (i) 
refactoring and better documenting the configurable parameters of each Chimera 
component (as discussed in Section 3.2.1.2.1), (ii) changing how external resources (e.g., 
declarative mapping rules) are configured to be accessed by the Chimera components 
(as discussed in Section  3.2.1.2.2).  
 
In this section, we provide additional details on specific changes enabled to facilitate 
configurability via DSL and enable the integration with the low-code Karavan tool. 
Currently, it is not possible to define a list of Beans in the Camel YAML DSL, which is the 
DSL also used by the Karavan plugin to configure a Route. For this reason, we refactored 
the Chimera components in order to support the configuration of each operation by 
providing one ChimeraResourceBean for each parameter. For example, it is possible to 

 
53 https://www.oracle.com/a/ocom/docs/graalvm_enterprise_community_comparison_2021.pdf  

https://www.oracle.com/a/ocom/docs/graalvm_enterprise_community_comparison_2021.pdf
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apply multiple GraphAdd operations (i.e., the operation adding RDF triples to the graph 
managed within the pipeline) in sequence by referencing different data sources. 
The second change involves adding a parameter to specify the operation to be executed. 
Previously, the operation could only be defined as a URI path parameter. However, by 
default, the VS Code Karavan plugin could not parse the URI of custom components 
correctly. This issue is effectively resolved by introducing a standard parameter for 
specifying the operation. For example, a route step that previously had to be written as 
from("graph://get?...") can now also be expressed as from("graph://?operation=get"). 
This provides a backward compatible and reliable workaround, allowing the Karavan 
tool to properly interpret and handle Chimera components and their configuration. 

3.2.3.2 Karavan Integration 
 
The refactoring of Chimera components has improved their alignment with the 
behaviour and structure of standard Apache Camel components. As a result, we could 
enable the integration with the Karavan tool so that the user can select Chimera 
components from the component palette available in Karavan while defining a DataOps 
pipeline. This facilitates the integration with other components of the pipeline and 
guides the configuration of the required parameters for each component. 
 
To install and use the Chimera components with the rest of the Camel framework in the 
VS Code Karavan plugin a few installation steps should be followed. The configuration 
files for the Chimera components can be downloaded from the Chimera GitHub 
repository54, which also contains the detailed installation steps alongside examples. 
 
Once the Chimera components are installed, they become available for immediate use. 
At this stage, users can start creating a new Camel project with the required 
dependencies to integrate Chimera components. After setting up the project, the 
Karavan tool can be used to visually design and configure a Route. Single components 
can be picked from the Karavan component palette, as shown in Figure 3-19 and 
assembled into complex routes. 
 

 
Figure 3-19: Karavan component palette showing the Chimera graph, mapping-template and rml components 

 

 
54 https://github.com/cefriel/chimera/tree/master/karavan 
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Once a route has been built, the components can be configured according to their 
needed functionality. For example, given the route shown on the left side of Figure 3-20, 
by clicking on a component the configuration menu shown on the right of Figure 3-20 is 
opened. This menu allows users to configure the component’s parameters according to 
their needs. Depending on the metadata supplied by the authors of the specific Camel 
component, some configuration options may be already configured, while certain 
parameters might offer a limited set of predefined values for user selection. 
 
An example of how the tool can guide the user in the configuration, is provided by the 
chimeraResource parameter for the Chimera components. Karavan can determine that 
the parameter expects a Bean, and as such, allows the user the option to choose the 
Beans that have been declared through the Karavan plugin, using the dedicated Bean 
declaration functionality shown in Figure 3-21. 
 

 
Figure 3-20: Low-code DataOps Configuration Karavan plugin interface 

 

 
Figure 3-21: Example of a ChimeraResourceBean that holds the lifting MTL mapping file defined through Karavan 
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Through this graphical approach to building routes, Karavan creates a corresponding 
DataOps pipeline defined using the YAML DSL, shown in  Figure 3-22. 
 

 
Figure 3-22: Example YAML Camel using Chimera components produced by the Visual Studio Code Karavan plugin 

For this route, a file’s content is read, a lifting mapping is applied to convert the data 
into RDF format, followed by a lowering mapping that transforms the RDF data into 
another specified format. The transformed data is then routed to an AMQP exchange 
for further processing or distribution. At the bottom of Figure 3-22 the 
ChimeraResourceBeans used in the route are defined, these being the MTL lifting 
mapping file and the MTL lowering mapping file. Both resources are defined by 
specifying the location of the mapping file and its serialization format and by associating 
a name to these resources. The Mapping Template component which performs both the 
lifting and lowering operations refers to these resources with these names using the 
#bean:lifting and #bean:lowering syntax. 
Considering the YAML file generated by Karavan, another advantage is that once the 
route has been defined, the user is no longer bound to use the user interface. Instead, 
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changes can be made directly to the YAML file. This is especially useful when routes are 
part of a version control system like Git. 
 
Once the route is completed, Karavan can export it to a dedicated Java project. The 
project is initialized with all the components present in the route, and Karavan specifies 
all the needed dependencies. At the moment, Karavan does not directly support the 
automatic addition of dependencies for custom components, and users have to 
explicitly add dependencies for Chimera components. Nevertheless, once a project has 
the required dependencies, the user can modify the pipeline through the Karavan 
interface, export it, and simply replace the YAML file within the Java project. 
 
A similar problem presented itself when testing the maturity of Karavan in defining and 
using Kamelets relying on Chimera components. Support for specifying external 
dependencies has been found to be lacking in Karavan, but we plan to further investigate 
this option for the next release by considering the latest Karavan developments55. We 
also plan to investigate a tighter integration with Karavan (e.g., for direct deployment of 
the pipelines) now that Chimera has been upgraded to the latest Camel version, which 
was one of the completed activities for the first release of the DataOps components 
(A3.5). 
 
For the second release of A3.7, we will focus on facilitating the automatic export and 
execution of pipelines from Karavan, e.g., by providing dedicated deployment templates 
as part of A3.6. Furthermore, we plan to explore the use of Kamelets, which can be 
catalogued within the Karavan plugin. These Kamelets offer the potential to allow users 
to easily incorporate commonly used route snippets into their projects with minimal 
configuration. By leveraging Kamelets, we hope to simplify further the process of 
designing a DataOps pipeline for the users. 

3.3 DATAOPS TOOLBOX PIPELINES FOR SMARTEDGE 
 
This section discusses examples of DataOps pipelines explicitly developed to address the 
requirements of SmartEdge use cases. These pipelines exemplify the usage of the 
artefacts implemented for the DataOps toolbox and offer additional insights. 
In Section 3.3.1, we consider a demonstrator DataOps pipeline defined for SmartEdge 
Use Case 2 on traffic data to evaluate the performance and scalability of the overall 
DataOps solution. In particular, we focused on evaluation against KPIs 2.2 and 2.3 and 
comparing performances for different deployment templates. 
In Section 3.3.2, we discuss how we implemented support for OPC-UA nodes for Use 
Case 4 in artefact A3.3 via a dedicated set of DataOps pipelines.  
 

3.3.1 DataOps Pipeline for harmonised traffic data (UC2) 
 
The DataOps pipeline defined for the SmartEdge use case 2 exemplifies the usage of the 
DataOps toolbox to implement a semantic conversion process to a stream of traffic data.  

 
55 https://camel.apache.org/blog/2024/03/camel-karavan-4.4.0/ 
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The pipeline ingests real-time data from the city of Helsinki radars, which is transmitted 
via WebSockets in JSON format. This data includes information on the number and types 
of vehicles detected, such as whether they are cars, trucks, or other vehicle types. Once 
collected, the data is converted into RDF to facilitate semantic interoperability and 
structured analysis. Two ontologies are employed for this purpose: the ASAM 
OpenXOntology56, which models road and vehicle-related data, and the SOSA57 (Sensor, 
Observation, Sample, and Actuator) ontology, which is used to describe sensor-
generated data. Together, these ontologies provide a standardized and meaningful 
representation of traffic and sensor data, enabling more effective data integration. The 
DataOps pipeline is illustrated in Figure 3-23. Declarative mapping rules are defined 
using the MTL and executed via the Mapping Template component. 
 

 
Figure 3-23: Example DataOps pipeline for the semantic conversion of radar data 

 

The pipeline considered for evaluation involves different DataOps pipeline components 
(A3.5) to fetch data from the WebSocket, transform it using a predefined mapping 
template, and collect performance metrics. The pipeline saves the transformed sample 
to a file, however, by introducing an appropriate Node Connector, the same pipeline can 
be leveraged to forward the data to a generic swarm target node.  
A modified version of this pipeline, performing data integration among different data 
sources, and details on the mapping rules defined are discussed in Deliverable D5.1 as 
part of the work done for the Data Stream Fusion artefact (A5.1.4).  
 
To test the different DataOps deployment templates (A3.6), we defined a Core and 
Spring project for the same pipeline as done in Section 3.2.2 for the demonstrator 
pipeline. For each DataOps deployment template, the provided files were customized 
and executed to obtain the following set of images:  

▪ Temurin Camel Core 
▪ Temurin Camel Spring 
▪ GraalVM Camel Core 
▪ GraalVM Camel Spring 
▪ Native-GraalVM Camel Core 
▪ Native-GraalVM Camel Spring 

 
The images were then uploaded to the Docker registry of the WP6 integration 
environment and executed to collect performance and scalability metrics over time. 

 
56 https://www.asam.net/standards/asam-openxontology/ 
57 https://www.w3.org/TR/vocab-ssn/ 
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The following metrics are collected and logged during the execution of the pipeline, as 
shown in Figure 3-24: 

▪ CM (Count Messages): Message counter 
▪ CPT (Current Processing Time): Time required to harmonize the sample 
▪ APT (Average Processing Time): Average processing time related to the number 

of messages harmonized 
▪ MXPT (Maximum Processing Time): Maximum processing time detected for 

harmonizing a sample 
▪ MXPT (Minimum Processing Time): Minimum processing time detected for 

harmonizing a sample 
▪ CSS (Current Sample Size): Size of the JSON sample received from the WebSocket 

URL 
▪ ASS (Average Sample Size): Average size of the Json samples received from the 

WebSocket URL 
▪ MXSS (Maximum Sample Size): Maximum size of the Json samples received from 

the WebSocket URL 
▪ MNSS (Minimum Sample Size): Minimum size of the Json samples received from 

the WebSocket URL 
 

 
Additionally, we record the memory and CPU usage of the container being executed 
every five seconds.  

 
The performance test is automated using a script58 that can be configured in terms of: 

▪ Number of test replicas executed for the same test case 
▪ Duration of the test 
▪ Optional parameter to specify a time interval between one test and the other 

The testing script is primarily structured around a Docker Compose template. This 
template is a blueprint for running various Docker images obtained from the different 
DataOps deployment templates. The script dynamically replaces the placeholders with 
the relevant test-specific values in the Docker Compose template. Subsequently, the 
modified template is used to start the Docker image. Performance metrics are collected 
as discussed above. 
 

 
58 https://github.com/cefriel/chimera-deployment-templates/blob/main/evaluation/run_tests.sh 

Figure 3-24: Example logs monitoring the execution of the DataOPs pipeline 
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For the following evaluation, we considered 7000 JSON samples collected from the 
WebSocket radar “lidar.otaniemi.2.json” in around 12 minutes with a frequency of 10 
messages per second. To better highlight the differences between the various test cases, 
the first 15 samples were removed for every case to slightly mitigate the impact of these 
initial spikes. In the following, we discuss the main results obtained and compare the 
performances between the different test cases. 
 
Table 3-3 reports the average, maximum and minimum value for conversion time and 
input size for each pipeline tested. Annex III (Section 9) also reports a visualization 
comparing the trends of sample size and corresponding conversion time over all the 
samples. 
From the values, it can be easily noted how images running the pipeline using Camel 
Core and the Temurin JVM recorded a better conversion time on average (3.25ms). In 
contrast, the same Camel Core version with GraalVM kept the conversion time lower 
than 15ms, while Temurin reached spikes of 44ms. 
The Native versions obtained higher conversion times, but still around 10ms on average. 
The Spring version of each image performed slightly worse on average in terms of 
conversion time. 
 

Table 3-3: Average/Max/Min metrics for conversion time and input size for each pipeline deployment tested. 

 Avg. 
Conversion 
time (ms) 

Max. 
Conversion 
time (ms) 

Min. 
Conversion 
time (ms) 

Avg. Input 
size (B) 

Max. Input 
size (B) 

Min. Input 
size (B) 

Temurin 3.25 44 1 2771 5322 708 

GraalVM 4.93 15 <1 2416 5061 413 

Native 9.99 78 1 2218 5937 126 

Temurin 
Spring 

7.08 26 1 2398 5335 418 

GraalVM 
Spring 

6.97 19 1 2724 5327 417 

Native 
Spring 

10.92 87 1 3826 7380 998 

 
In terms of CPU and memory utilisation, we summarise the main insights for each 
deployment template: 

▪ Camel Core: the results from the Camel core tests demonstrated nearly identical 
performance between the Temurin and GraalVM images. This suggests that, for 
the considered DataOps pipeline, the choice of runtime environment does not 
significantly impact CPU and memory utilization. 

▪ Camel Spring: when testing the Spring version, both Temurin and GraalVM 
images exhibited similar performance levels. However, a slight performance 
advantage in terms of CPU utilization was observed for the Spring applications 
running on the GraalVM image. This marginal improvement indicates that 
GraalVM might offer a modest performance boost for Spring-based workloads. 

▪ Camel Native (Core and Spring): Native images instead demonstrated a 
significant performance improvement in terms of both CPU and memory 
utilization compared to the standard (Temurin and GraalVM) images. This is 
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attributed to the ahead-of-time compilation that native images undergo, 
resulting in smaller, faster-starting applications. When comparing native Camel 
core and Spring applications, the Spring version consistently outperformed the 
core version in terms of both CPU and memory usage. This suggests that the 
Spring framework, when compiled into a native image, offers additional benefits 
in terms of resources utilization. 

Annex II (Section 7) presents detailed visualizations of memory and CPU utilization for 
each test case and analyses them by comparing the different deployments tested.  
 
In summary, Native images offer lower resource utilization but register higher 
conversion times. On the contrary, images with Camel Core run through a JVM obtain 
the best conversion time performance while having higher CPU and memory utilization. 
Considering the KPI 2.2 and 2.3, the JSON stream (10 req/s, 3Kb) was converted without 
dropping requests with an average conversion time lower than 4ms. Regarding the 
baselines [Scrocca21] of 100ms for 50KB XML and 100 concurrent requests/s, the 
average conversion time registered (<4ms) shows a potentially huge improvement and 
should enable processing of 250 req/s. However, we will have to perform additional 
tests for the second release, considering bigger payloads and higher concurrency of 
requests. Moreover, the test showcased how the input data source generated messages 
with unpredictably varying frequency and input size.  
 
For these reasons, to obtain better comparable results for each image for the second 
release, we plan to (i) record the data from the original input data source, (i) keep 
messages with a bigger payload, or manually edit them to reach at least 50kB, and (iii) 
reproduce the stream with messages sent at regular intervals. This would also enable 
the possibility of executing tests by varying the interval between requests, i.e., reaching 
the 100 req/s (interval 10ms) of the considered baseline. 

3.3.2 DataOps Pipeline for OPC-UA support in A3.3 (UC4) 
 
The support for OPC-UA for the Knowledge Graph Repository (A3.3) is developed using 
the DataOps toolbox and designed to define pipelines that perform a data 
harmonization process using the Chimera components. Such pipelines enable the 
description in the repository of swarm nodes for Use Case 4 that are compliant with the 
OPC UA standard59. Moreover, it enables the searching of OPC UA nodes according to 
specific capabilities. 
 
More specifically, DataOps pipelines are used to insert and retrieve data from the 
Triplestore used by the Knowledge Graph Repository by carrying out two harmonization 
processes: a lifting operation that transforms data from an OPC UA NodeSet in XML 
format to RDF format, and a lowering operation that queries data in RDF format and 
returns an OPC UA NodeSet in XML. The first release of the pipeline is able to transform 
and retrieve an OPC UA NodeSet in its entirety. Moreover, it could be used to perform 
any query on the integrated RDF graph. For the second release, we will explore the 

 
59 https://camel.apache.org/  

https://camel.apache.org/
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possibility of generating a custom OPC UA Node Set based on the result of a custom 
query by the user, i.e., containing only the nodes matching the provided query. 
 
The implemented DataOps pipeline leverages a remote Triplestore for storage and 
querying. For the first release, we implemented and tested the solution with two 
Triplestore with open license: RDF4J Server60 and GraphDB Free61. 
 
The application is available through a Docker image built using the DataOps deployment 
templates. Two docker-compose files are defined depending on the Triplestore to be 
used. The Docker image can be easily configured via environment variables to provide 
the correct endpoints for connecting to an already existing Triplestore. The images are 
uploaded in the WP6 Docker Registry and executed on Kubernetes in the integration 
environment via a dedicated set of manifest files. 
 
The pipelines leverage Jetty Camel component62 for creating a standalone rest service 
which provides the following API endpoints: 

1. POST: <Server-Url>:<port>/api/v1/graph 

2. POST: <Server-Url>:<port>/api/v1/sparql 

3. GET: <Server-Url>:<port>/api/v1/graph?named_graph_id={Named graph id} 

4. GET: <Server-Url>:<port>/api/v1/graph/names 

 
The POST method on the /api/v1/graph endpoint takes as body an OPC UA NodeSet in 
XML. It executes a lifting transformation to produce RDF triples according to the OPC UA 
ontology. RDF content is saved in the repository in a dedicated named graph. The 
identifier of the named graph is extracted from the request body, considering the OPC 
UA Model associated with the NodeSet. Currently, we expect each OPC UA NodeSet to 
define nodes for a single OPC UA Model. 
The GET method on the /api/v1/graph endpoint returns the content of the named 
graph, specified with the parameter named_graph_id. The RDF is retrieved from the 
repository and converted via a DataOps pipeline to a corresponding OPC UA XML 
NodeSet. 
The GET method on the /api/v1/graph/names endpoint returns the list of all the named 
graphs which are saved on the triple store. 
The POST method on the /api/v1/sparql endpoint takes as body a SPARQL query as text 
and executes it on the triple store returning the result set. The result can be requested 
according to different data formats (e.g., CSV, JSON). This enables querying the 
repository for finding OPC-UA nodes according to specific capabilities. 
 
 

 
60 https://rdf4j.org/documentation/tools/server-workbench/  
61 https://graphdb.ontotext.com/  
62 https://camel.apache.org/components/4.8.x/jetty-component.html  

https://rdf4j.org/documentation/tools/server-workbench/
https://graphdb.ontotext.com/
https://camel.apache.org/components/4.8.x/jetty-component.html
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Figure 3-25 describes each pipeline and the DataOps components (in green) used to 
implement them. A dedicated set of mappings defined using MTL and custom functions 
(OPCUALiftingUtils and OPCUALoweringUtils) are executed using the Mapping Template 
component to perform the lifting and lowering operations. 
 
Notably, the defined pipelines can initialize a dedicated repository on the Triplestore if 
it is not already available. Furthermore, we implemented a basic authentication 
mechanism that authenticates all the requests received on the REST endpoints. 
 
For the second release, we plan to improve the management of NodeSets relying on the 
same set of companion specifications and to implement a strategy for dealing with 
different versions of the same OPC UA NodeSet in the RDF Graph. 
 
 
  

Figure 3-25: DataOps pipelines enabling support for OPC UA Nodesets in the A3.3 artefact 
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4 CREATION AND ORCHESTRATION OF SWARM INTELLIGENCE APPS 
 
In this section, we discuss the final design and first implementation of the artefacts 
dedicated to the creation and orchestration of swarm intelligence Apps, as part of Task 
3.3 of SmartEdge WP3. More specifically, these are artefacts: 
 

▪ A3.8: Semantic Recipe Integration with Mendix 
▪ A3.9: Recipe-TD Matcher 
▪ A3.10: Mendix Recipe Orchestrator 

4.1 FINAL DESIGN 
 
This section presents the final design of each artefact. 

4.1.1 Final Design of Semantic Recipe Integration with Mendix (A3.8) 
 
One of the key advantages of the SmartEdge ecosystem lies in the ability to create 
domain-specific Apps using Low-Code development tools. The idea behind this concept 
is to facilitate and accelerate development time in Edge-enabled systems, unburdening 
application engineers from device configuration and other complex specific settings. As 
explained in the previous section, in the SmartEdge approach we propose the creation 
of Recipes that encapsulate the structural key characteristics of an application of a given 
domain.  
These Recipes work as template or stereotype that indicates which are the main steps 
or operations that the swarm App has to fulfil, along with the goals, capabilities needed 
from the nodes, interactions among them, as well as input and output data. As seen in 
artefact A3.1, these Recipes are specified as knowledge graphs based on semantic 
models, with the ability to reuse existing vocabularies from domain-specific areas. These 
Recipes are then the basis for the SmartEdge approach for low-code swarm App 
development, as they constitute a declarative representation of what the app should do 
and how it should be structured. 
With these considerations at hand, the Mendix platform provides an interesting starting 

point for enabling the implementation of the Recipes specified in SmartEdge. Mendix is 

a low-code platform with both design-time and runtime environments that facilitates 

the process of developing applications in different domains, including IoT components. 

Mendix Studio Pro (currently in version 10.x) is the design-time component of Mendix, 

which provides “a visual model-driven IDE with customizable themes, drag-and-drop 

functionality, reusable components, and full-stack capabilities”63. This is shown in Figure 

4-1. The orchestration in SmartEdge is configured at design time using this tool, which 

permits organizing the different data sources (e.g., coming from edge nodes), 

establishing a flow of tasks and computations that need to be performed, and the nodes 

that are involved.   

 
63 https://www.mendix.com/platform/ide/  

https://www.mendix.com/platform/ide/
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Figure 4-1: Mendix Studio Pro: design time App environment. 

  

However, Mendix Studio Pro lacks the ability to employ ontologies to represent nodes 
in the system, capabilities, steps, or flows. It also lacks the option of including external 
semantic vocabularies, e.g., from existing standards, in order to represent input, 
outputs, or metadata information. Although Mendix Studio Pro counts with a number 
of plugins in the Mendix marketplace, it does not have built-in components able to 
connect with Triple stores or Knowledge Graphs, in order to connect with the Recipes 
proposed in SmartEdge.  
The SmartEdge Artefact A3.8 precisely addresses this gap, and consists of an integration 
component that enables the reuse of semantic Recipes within the Mendix development 
environment, i.e., Mendix Studio Pro.  
With the integration of the semantic Recipe Knowledge Graph (a triple store containing 
the semantic recipes) within Mendix, it will be possible to discover and retrieve existing 
Recipes, related to specific swarm tasks. For example, a Recipe created for monitoring 
temperature measurements using a swarm of sensors could be made available in the 
Knowledge Graph. This Recipe would use RDF to describe what are the goals of the task, 
and the capabilities required from participating sensors in the swarm (e.g., measure 
temperature values, with a given frequency, etc.). 
The architectural view of Artefact A3.8 is depicted in Figure 4-2. The Semantic Recipe 
integration for Mendix has access to Recipes stored as RDF knowledge graphs in a triple 
store database. Through SPARQL queries, it is possible to query and filter suitable 
Recipes that can be imported into Mendix, providing an initial set of steps in a micro- or 
nano-flow. Once the Recipe is loaded, the low-code developer can make all necessary 
modifications to complete the application (based on the Recipe) and customize it as 
needed. 
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Figure 4-2: Semantic Recipe Integration. 

 
The Mendix semantic Recipe integration functionalities can be summarized as follows: 

▪ Recipe search: list available Recipes and search/filter according to different 
criteria: name, domain, capabilities, input/output, interactions.   

▪ Recipe selection: from the Recipes available in the repository, select one and 
import it into the Mendix design-time environment, where further modifications 
can be made. 

▪ Recipe export: from an existing Mendix flow, export a semantic Recipe and store 
it in the repository, from where it can later be retrieved. 

Assumptions: This artefact depends on other SmartEdge artefacts, and makes certain 
assumptions as we detail next: 

▪ This component requires the SmartEdge schema (ontology) from A3.1, which 
provides the blueprint for specification of nodes in the swarm. The SmartEdge 
schema defines the concepts of coordinator, orchestrator and other nodes that 
will participate in the Recipe.  

▪ The artefact also requires the SmartEdge Recipe model, which is directly used to 
model the operations and capabilities in the Recipe, then included in the Mendix 
flow. 

▪ The artefact makes use of the SmartEdge Knowledge Graph repository (A3.3) 
where the semantic Recipes are stored and queried.  

▪ This artefact assumes the usage of Mendix as low-code development tool, 
although it could be in the future adapted to other similar tools based on flow-
shaped declarative application development environments. 
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4.1.2 Final Design of Recipe-TD Matcher (A3.9) 
 

Having the Recipes integrated into the Mendix Studio Pro environment, it is necessary 
to link the capabilities specified in the Recipe, with actual nodes available in the actual 
deployment. Nodes in the system are specified using the WoT TD specification64. In 
some scenarios nodes can also connect through OPC UA connectors as well.  

 

 
Figure 4-3: W3C Thing Description core vocabulary (source: https://www.w3.org/TR/wot-thing-description/ ) 

 

As we can see in Figure 4-3, the TD core vocabulary provides the essential information 
needed to characterize a Thing, e.g., a device or sensor that maps to a node in the 
swarm. An essential information contained in the TD is the specification of what 
capabilities it has, which are needed by the Recipe. Capabilities in TD are specified 
through the concept of “affordances”, e.g., action, event or property affordances.  

The goal of Artefact 3.9 is to match the requirements and specifications described in the 
semantic Recipes, to the capabilities indicated in the WoT TD representations of the 
swarm nodes.  

Taking a specific Recipe, the matching tool will look for the swarm devices available in 
the TD directory and identify those that satisfy the necessary conditions of the Recipe. 
Using the results of the matching, the application flow can be completed at design time, 
including the swarm nodes that have been suggested by the matcher. Affordances in the 
TDs will provide the necessary abstractions to represent the device capabilities, as well 
as the technical means to access them (endpoints, interfaces). As it can be seen in Figure 
4-5 the SmartEdge Recipe model directly links capabilities to affordances at the 
conceptual level. 

 

 
64 https://www.w3.org/TR/wot-thing-description/  

https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
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Figure 4-4: Matchmaking between the capabilities required in the Recipe and the nodes available in the Swarm at 
design time 

Assumptions: This artefact depends on other SmartEdge artefacts, and makes certain 
assumptions as we detail next: 

▪ This artefact requires the existence of semantic Recipes as described in the 
artefact A3.1 and used in artefact A3.8.  

▪ TDs for existing swarm devices, and ideally the KGs and TD directory to host 
them, respectively.  

▪ Nevertheless, for a first version the matcher may also work as a standalone 
version only connected to Recipe/TD endpoints. 

 

 

Figure 4-5: Visual representation of the main concepts of the SmartEdge semantic Recipe model, from Artefact 3.1 
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4.1.3 Final Design of Mendix Recipe Orchestrator (A3.10) 
 
The goal of this artefact is to enact the Recipes created with Mendix following a given 
Recipe and after the matching with existing devices has been performed. 
 

This will include the coordination of the operations to be executed by different nodes in 
the swarm. Therefore, the orchestrator will also include the instantiation of the 
semantic description of the tasks, goals, sub-tasks, and skills established in the 
Recipe.  The coordinator will then need to find and discover which nodes comply with 
these requirements. In cases where the orchestrator and coordinator roles are 
implemented by the same component (e.g., Mendix runtime), these two roles can be 
merged in only one entity.  In certain cases, the orchestrator may not find the necessary 
resources to achieve the Recipe, and it could either fail or latently wait until the 
necessary resource can be scheduled. 

 

This component assumes the usage of Mendix to perform the orchestration tasks. Using 
an existing Recipe, the low code developer we'll adapt it in order to customize the 
application, based on the Recipe. Then with the help of the previous artefact the 
matching of the Recipe and the nodes in the swarm will be performed. Once the bindings 
with the necessary devices have been established, the Mendix flow will be ready to be 
instantiated by the runtime. Different steps in the flow may require the interaction with 
edge and IoT devices. Using the Mendix tool chain artefact, different connectors will be 
made available. These connectors will allow interfacing devices through REST APIs, 
Bluetooth, etc. For instance, connection to Bluetooth devices can be specified through 
TD semantic affordances.  

 

This artefact takes the following assumptions: 

▪ Application flows are built based on a semantic Recipe using the SmartEdge 
Recipe model. 

▪ Nodes in the swarm are matched against the Recipes as specified in the matcher 
artefact. 

▪ The orchestration runtime is provided by Mendix. 
▪ Interactions with IoT and edge devices are provided by connectors embedded in 

the Mendix flow. 
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Figure 4-6: Orchestration of Mendix applications in A3.10, based on SmartEdge Recipes. 

4.2 FIRST IMPLEMENTATION 

4.2.1 First Implementation of Semantic Recipe Integration with Mendix (A3.8) 
 
This component is targeted for the SmartEdge solution 2 release. For milestone M1, the 
integration is at an initial state. The semantic Recipe model is still being developed as 
part of WP3, including the Knowledge Graph (KG) that will host the Recipes. In parallel, 
as part of Task T3.3, we have studied Mendix’s flows in order to determine how the 
integration implementation will be incorporated. Java extensions in Mendix have been 
tested, including usage of REST service calls, which could be employed to access the KG. 
 
Examples of Recipes used so far include simple lamp control-based examples, as well as 
Recipes based on the SmartEdge use cases. For instance, the following snippet of a 
semantic Recipe is designed to describe an application flow for a simple Lamp activation 
system. Notice that the Recipe reuses the semantic artefact A3.1, but can also reference 
other external ontologies and vocabularies. For example, in the snippet below we refer 
to the SAREF model65. 
 
 
 

 
65 https://saref.etsi.org/core/v3.1.1/  

https://saref.etsi.org/core/v3.1.1/
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{ 

    "@type":[ 

       "RecipeModel:Recipe" 

    ], 

    "title":"Lamp control Recipe", 

    "RecipeModel:hasCapability":{ 

       "@type":[ 

          "saref4bdlg:Lamp" 

       ] 

    } 

… 

} 
Figure 4-7: Snippet of a semantic Recipe for a test Lamp application. 

 
Within the Recipe, different elements can be specified. For instance, interactions may 
include operations to be executed at the device level. In the example below, an 
operation of data retrieval is specified, which obtains the status of the Lamp. The type 
of interaction, as well as operation details, input and output data, are specified using a 
semantic representation, as in the following JSON-LD snippet. 
 

"RecipeModel:hasInteraction":[ 

         { 

         "status":{ 

            "description":"current status of the lamp", 

            "@type":[ 

               "saref4bdlg:colorTemperature", 

               "RecipeModel:Interaction" 

            ], 

            "RecipeModel:hasOutputData":{ 

               "type":"string" 

            }, 

            "RecipeModel:operation":"RecipeModel:Retrieve" 

         } 
Figure 4-8: JSON-LD snippet of n interaction detail in a sample Recipe. 

Different approaches are currently explored to integrate these Recipes into the Mendix 
design-time environment, potentially importing nanoflows into Mendix, or adding flow 
components that are able to communicate with the TD repository (artifact A3.3) and 
SmartEdge Recipe Knowledge Graph. For example, the Recipe used the example above 
reflects the workflow presented in the Mendix flow in the figure below. 
 

 
Figure 4-9: Mendix flow of a sample application 
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Next steps: 

▪ Different options are being tested regarding the importing of semantic Recipes 
into Mendix flows. Mendix supports a JSON format for representing the flows, 
and Chimera can be used as a means to translate from one model to the other, 
although it remains to implement the full automation of the loading of Recipes. 
For the time being this is an option to export Mendix flows, although there is not 
yet a corresponding import option at the moment.  

▪ Testing of sample Recipes, in particular form the SmartEdge use cases will be key 
to demonstrate the efficacy of the artefact in managing Recipes and integrating 
them with the Mendix Studio Pro tool.  

 

4.2.2 First Implementation of Recipe-TD Matcher (A3.9) 
 
The matching component is targeted for the SmartEdge solution 2 release. As part of 
Task T3.3, we have provided sample TD RDF descriptions using JSON-LD and started 
using local deployments of the Node-WoT66 servient for hosting TDs.  The inclusion of 
Node-WoT within Mendix is currently under testing. It has so far been used by using a 
browser bundle running within Mendix.  
 
As an example for the matching process, the Recipe snippet below represents part if the 
description of an exercise in a smart healthcare solution for digital rehabilitation. The 
Recipe snippet includes information, among other things, about the required devices 
needed, specified in terms of the capabilities that they should provide. In the example 
below (Figure 4-10) this refers to the capacity of providing rotation data for the limbs of 
the patient.  
 

ex:exerciseRecipe1 

        rdf:type               se:Exercise ; 

        schema:identifier      "1" ; 

        schema:additionalType  PhysicalTherapy: ; 

        schema:name            "Movement control tests-1" ; 

        schema:description     "Active cervical flexion and extension" ; 

        schema:video           <https://youtu.be/uKjSvHtylUo> ; 

        schema:duration        "120s" ; 

        ex:repetition          "3" ; 

        ex:requiredDevice      ex:headSensor,ex:shoulderSensor; 

        ex:requiredMeasurements fe:hasConnectionFunction, fe:hasRotationFunction ; 

        ex:procedureType       ex:Noninvasive ; 

        schema:howPerformed    [  

          schema:text "The patient flexes the cervical spine so that the chin moves    

towards the sternum. The patient then extends the cervical spine into extension as 

far as possible and finally returns to the upright position." 

        ] ; 

 
66 https://github.com/eclipse-thingweb/node-wot  

https://github.com/eclipse-thingweb/node-wot
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        schema:description     "Allow head movements, do not allow shoulder 

movements" ; 

        ex:successMeasurements fe:hasSuccessEulerMeasurements, 

fe:hasSuccessQuaternionMeasurements ; 

        ex:alert               "positiveCount_anyShoulderMovements, wrongHeadAngle" . 
Figure 4-10: Example of a Recipe snippet for a healthcare physiotherapy Recipe in Turtle format. 

 
The Recipe-TD matcher then needs to perform SPARQL queries to identify which TDs 
contain the capabilities that are needed in order to fulfill the goals of the Recipe. In the 
example below (Figure 4-11), a wearable device includes in its TD descriptor information 
including the capabilities of the sensor. Given that it implements one type of rotation 
monitoring function (e.g., Euler rotation), it can be one of the devices potentially 
matched for the Recipe provided above. Further details could also be included in the 
mapping, including sensor accuracy, trust, frequency, etc. 
 
se:thingy52   

        rdf:type               se:Device ; 

        se:role                se:Sensor ; 

        se:title               "smartEdgeSensor" ; 

        se:description         "Detects and responds to some type of 

input from the physical environment—e.g., head movements" ; 

        se:location            "head or shoulder" ; 

        se:properties          fe:hasCapability, fe:identifier_service ; 

        se:actions             fe:hasConnectionFunction, 

fe:hasColorFunction ; 

        se:events              fe:hasApplicationFunction ; 

        se:goals               fe:hasRotationFunction ; 

        se:knowledge           "compensationInfo" . 
Figure 4-11: Snippet of a TD description of a device including details about its capabilities, in Turtle format. 

Next steps: 
▪ Refine the SPARQL queries to perform the matching between Recipes and TDS. 
▪ Provide advanced matching parameters that may include detailed capability 

details, e.g., data quality, frequency, etc. 
▪ Given that both Recipes and TDs can be externalized in independent Knowledge 

Graph stores, the artefact A3.9 will also be made available as an independent 
library. 

4.2.3 First Implementation of Mendix Recipe Orchestrator (A3.10) 
 
This component is targeted for the SmartEdge solution 2 release. For the moment, the 
Mendix runtime has been tested with initial versions of UC4 and UC5b. This was 
important, in order to test device data retrieval from Mendix Apps, (e.g., using Nordic 
Thingy52 devices through BTE), and in general to test the application flow. For the next 
steps, we will continue with more complete flows from the use cases that will make use 
of Mendix, so that we capture more complete flows. These will be used to provide more 
complete Recipes, which will be matched with device capabilities as explained in the 
previous artefact. 
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One of the developments in this artefact includes the inclusion of microflow actions in 
Mendix that allow interacting with Thing Description servers. For instance, in the 
example below (Figure 4-12), an Invoke Action is called to perform an action exposed 
through an affordance in a TD. In the example it is simply incrementing a counter 
through HTTP verbs, but following the TD standard it can be used to interface any IoT 
device able to interpret those affordance invocations. 
 

 
Figure 4-12: Mendix flow example, connecting to a TD counter. 

In the figure below (Figure 4-13) we can see how a property affordance can be called, 

e.g., to read a certain property (in the simple example the value of the counter), in 

JavaScript code. Custom code can be added by the developer at this level in case of 

needing further functionalities.  
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Figure 4-13: Reading a property from a TD description from JS code in a Mendix flow. 

Similarly, through the property affordance of the TD, it is possible to modify the value 

of a given property, as seen in the example below (Figure 4-14).  The same function can 

be reused to set any IoT device property, e.g., a state, parameter, or any other kind of 

value that is exposed through the TD interface. 

 
Figure 4-14: Writing back to a TD exposed property using JS code inside Mendix. 
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Once these interactions through the TD interface are established, then the low-code 

developer can complete the application, e.g., a front-end webpage designed to display 

the values of the counter. In the screenshot below (Figure 4-15) we can see how this is 

done for the simple counter example on a basic front end web page designed in Mendix.  

 
Figure 4-15: Accessing TD-retrieved properties from a Mendix-created application page. 

 
At runtime, we have tested these TD invocation activities in a flow orchestrated by the 
Mendix runtime.  To do so, first the  Node-WoT server (an Eclipse implementation of a 
WoT server through TDs) is started independently through a Docker container (Figure 
4-16).  
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Figure 4-16: Accessing the Node-WoT server, counter example exposed through a TD. 

 

And then the Mendix project is run, and the application can read, write and display the 

values exposed by the TD, as it can be seen in the console output and the application 

frontend (Figure 4-17). 

 

 
Figure 4-17: Mendix App frontend. TD accessed through the application during runtime 
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Runtime Invoke Action (Increment) and read property again through the TD interface 

(Figure 4-18): 

 
Figure 4-18: Runtime invoke action: TD property read through the Mendix runtime 

 
 
Next steps: 

▪ Consolidate the implementation and integration of TD invocation actions in 
Mendix 

▪ Integrate the TD-Recipe matching tool into the Mendix orchestration workflow. 
▪ Test the orchestration and execution of instantiated Recipes in collaboration 

with use case owners. 
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5 CONCLUSIONS 
 
This document described the first release of artefacts implemented in SmartEdge to 
enable the concept of Continuous Semantic Integration (CSI). This concept is broken 
down into (i) Standardized Semantic Interfaces (Section 3); (ii) the DataOps toolbox for 
semantic management of things and embedded AI apps (Section 4); (iii) Creation and 
orchestration of Swarm Intelligence apps (Section 5). This deliverable described the final 
design of the CSI tools by revising and extending deliverable D3.1 and considering the 
final list of requirements from D2.2. Section 1, provided an overview of the tasks 
required for CSI and described how the 11 artefacts identified for WP3 are expected to 
be integrated to enable CSI for a SmartEdge use case. Section 2 also reported the 
expected integration with WP4 and WP5 and the current status for each artefact.  
 
This deliverable provided the following contributions considering the SmartEdge Obj.2 
“Middleware and tools for continuous semantic integration”: 

▪ standardized semantic interface: first implementation of interoperable semantic 
models for the description of nodes (statically and at runtime) and applications 
(i.e., Recipes), repository for the store and retrieval of interoperable 
descriptions, middleware solutions for standardized interfaces among nodes;  

▪ continuous conversion process based on declarative mappings and scalable from 
edge to cloud: first implementation of reusable and modular component for the 
declarative definition of conversion pipelines, templates for scalable 
deployments of pipeline on Edge and Cloud devices, low-code approach for 
pipeline definition; 

▪ declarative approach for the creation and orchestration of apps based on swarm 
intelligence: final design and initial developments to support the definition of 
semantic Recipes, perform matchmaking of nodes for Recipes, and orchestrate 
Recipes across nodes. 

 
The second release will focus on extending and improving artefacts released for the first 
two objectives by implementing feedback from the first validation phase within WP6. 
Furthermore, the artefacts planned for release 2 will be made available. 
 
The status of KPIs for Work Package 3 (WP3) is presented in this deliverable (see Table 
2.4), considering the progress made on the first implementation of the tools. A full 
report against SmartEdge requirements and KPIs will be provided in D6.1 considering 
the first release of the integrated SmartEdge solution. 
 
The successor of this deliverable, i.e., D3.3 will describe the final implementation of tools 
for Continuous Semantic Integration based on the collected feedback.   
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7 ANNEX I – SAMPLE RECIPE FOR UC4 
 
This annex presents a sample Recipe for UC4 which is described in Section 2.2.2.1.  
 
{ 
"@context":[ 
       { 
          "RecipeModel":"http://www.semanticweb.org/SmartEdge/RecipeModel/", 
          "saref4bdlg": "https://saref.etsi.org/saref4bldg/", 
          "saref": "https://saref.etsi.org/saref/", 
          "iot": "http://iotschema.org/", 
          "@id":"http://www.semanticweb.org/SmartEdge/RecipeModel/", 
          "@type":[ 
             "http://www.w3.org/2002/07/owl#Ontology" 
          ] 
       }], 
"@type":[ 
       "Recipe" 
    ], 
    "title":"Metaverse product assembly Recipe", 
    "NLQ": "An application to simulate the assembly of a product in assembly station in metaverse", 
    "hasCapability":{ 
       "@type":[ 
          "SmA:kill_Insert" , "SmA:Skill_Load_Unload" 
       ] 
    }, 
    "hasIngredients":[ 
       { 
          "load":{ 
             "@id":"b4493a89cfd4a062", 
             "NLQ": "find a skill to load the plate into an assembly module", 
             "description":"load plate to a module", 
             "@type":[ 
                "SmA:kill_Load_Unload", 
                "Ingredient" 
             ], 
             "hasInputData":{ 
                "type":{ 
                    "argument1": { 
                        "name": "sourcePos", 
                        "type": "number" 
                    }, 
                    "argument2": { 
                        "name": "DestinationPos", 
                        "type": "number" 
                    }, 
                    "argument3": { 
                        "name": "RFID", 
                        "type": "number" 
                    } 
                } 
            }, 
             "hasOutputData":{ 
                "type":{ 
                    "argument1": { 
                        "name": "ErrorID", 



D3.2 First implementation of tools for CSI SmartEdge GA 101092908 
 

87 
 

                        "type": "number" 
                    } 
                } 
             }, 
             "operation":"Update", 
             "interactsWith":[ 
             { 
             "hasSerialNumber": "1", 
             "@id": "ccfca6fc0f1c1e9c", 
             "operation":"Update" 
             } 
            ] 
          } 
      }, 
       { 
          "insert":{ 
            "@id":"ccfca6fc0f1c1e9c", 
            "NLQ": "find a skill to insert a block into the plate", 
             "description":"insert a block into the plate", 
             "@type":[ 
                "SmA:Skill_Insert", 
                "Ingredient" 
             ], 
             "hasInputData":{ 
                "type":{ 
                    "argument1": { 
                        "name": "Position", 
                        "type": "number" 
                    }, 
                    "argument2": { 
                        "name": "BuildingBlockTypeID", 
                        "type": "number" 
                    }, 
                    "argument3": { 
                        "name": "Orientation", 
                        "type": "number" 
                    }, 
                    "argument4": { 
                        "name": "RFID", 
                        "type": "number" 
                    }, 
                    "argument5": { 
                        "name": "CurrentConfiguration_BuildingBlockTypeId", 
                        "type": "number" 
                    }, 
                    "argument6": { 
                        "name": "CurrentConfiguration_Orientation", 
                        "type": "number" 
                    } 
                } 
            }, 
             "hasOutputData":{ 
                "type":{ 
                    "argument1": { 
                        "name": "ErrorID", 
                        "type": "number" 
                    } 
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                } 
             }, 
             "RecipeModel:operation":"RecipeModel:Update", 
             "interactsWith":[ 
             { 
             "hasSerialNumber": "2", 
             "@id": "dcfca6fc0f1c1e9d", 
             "operation":"Update" 
             } 
            ] 
          } 
       }, 
       { 
        "insert":{ 
          "@id":"dcfca6fc0f1c1e9d", 
          "NLQ": "find a skill to insert a block into the plate", 
           "description":"insert a block into the plate", 
           "@type":[ 
              "SmA:Skill_Insert", 
              "Ingredient" 
           ], 
           "hasInputData":{ 
              "type":{ 
                  "argument1": { 
                      "name": "Position", 
                      "type": "number" 
                  }, 
                  "argument2": { 
                      "name": "BuildingBlockTypeID", 
                      "type": "number" 
                  }, 
                  "argument3": { 
                      "name": "Orientation", 
                      "type": "number" 
                  }, 
                  "argument4": { 
                      "name": "RFID", 
                      "type": "number" 
                  }, 
                  "argument5": { 
                      "name": "CurrentConfiguration_BuildingBlockTypeId", 
                      "type": "number" 
                  }, 
                  "argument6": { 
                      "name": "CurrentConfiguration_Orientation", 
                      "type": "number" 
                  } 
              } 
          }, 
           "hasOutputData":{ 
              "type":{ 
                  "argument1": { 
                      "name": "ErrorID", 
                      "type": "number" 
                  } 
              } 
           }, 
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           "RecipeModel:operation":"RecipeModel:Update", 
           "interactsWith":[ 
           { 
           "hasSerialNumber": "3", 
           "@id": "ecfca6fc0f1c1e0e", 
           "operation":"Update" 
           } 
          ] 
        } 
     }, 
     { 
        "insert":{ 
          "@id":"ecfca6fc0f1c1e0e", 
          "NLQ": "find a skill to insert a block into the plate", 
           "description":"insert a block into the plate", 
           "@type":[ 
              "SmA:Skill_Insert", 
              "Ingredient" 
           ], 
           "hasInputData":{ 
              "type":{ 
                  "argument1": { 
                      "name": "Position", 
                      "type": "number" 
                  }, 
                  "argument2": { 
                      "name": "BuildingBlockTypeID", 
                      "type": "number" 
                  }, 
                  "argument3": { 
                      "name": "Orientation", 
                      "type": "number" 
                  }, 
                  "argument4": { 
                      "name": "RFID", 
                      "type": "number" 
                  }, 
                  "argument5": { 
                      "name": "CurrentConfiguration_BuildingBlockTypeId", 
                      "type": "number" 
                  }, 
                  "argument6": { 
                      "name": "CurrentConfiguration_Orientation", 
                      "type": "number" 
                  } 
              } 
          }, 
           "hasOutputData":{ 
              "type":{ 
                  "argument1": { 
                      "name": "ErrorID", 
                      "type": "number" 
                  } 
              } 
           }, 
           "RecipeModel:operation":"RecipeModel:Update", 
           "interactsWith":[ 
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           { 
           "hasSerialNumber": "4", 
           "@id": "fcfca6fc0f1c1e1f", 
           "operation":"Update" 
           } 
          ] 
        } 
     }, 
     { 
        "insert":{ 
          "@id":"fcfca6fc0f1c1e1f", 
          "NLQ": "find a skill to insert a block into the plate", 
           "description":"insert a block into the plate", 
           "@type":[ 
              "SmA:Skill_Insert", 
              "Ingredient" 
           ], 
           "hasInputData":{ 
              "type":{ 
                  "argument1": { 
                      "name": "Position", 
                      "type": "number" 
                  }, 
                  "argument2": { 
                      "name": "BuildingBlockTypeID", 
                      "type": "number" 
                  }, 
                  "argument3": { 
                      "name": "Orientation", 
                      "type": "number" 
                  }, 
                  "argument4": { 
                      "name": "RFID", 
                      "type": "number" 
                  }, 
                  "argument5": { 
                      "name": "CurrentConfiguration_BuildingBlockTypeId", 
                      "type": "number" 
                  }, 
                  "argument6": { 
                      "name": "CurrentConfiguration_Orientation", 
                      "type": "number" 
                  } 
              } 
          }, 
           "hasOutputData":{ 
              "type":{ 
                  "argument1": { 
                      "name": "ErrorID", 
                      "type": "number" 
                  } 
              } 
           }, 
           "RecipeModel:operation":"RecipeModel:Update", 
           "interactsWith":[ 
           { 
           "hasSerialNumber": "5", 
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           "@id": "g4493a89cfd4a063", 
           "operation":"Update" 
           } 
          ] 
        } 
     }, 
     { 
        "Unload":{ 
            "@id":"g4493a89cfd4a063", 
            "NLQ": "find a skill to unload the plate from an assembly module", 
            "description":"load plate to a module", 
            "@type":[ 
               "SmA:kill_Load_Unload", 
               "Ingredient" 
            ], 
            "hasInputData":{ 
               "type":{ 
                   "argument1": { 
                       "name": "sourcePos", 
                       "type": "number" 
                   }, 
                   "argument2": { 
                       "name": "DestinationPos", 
                       "type": "number" 
                   }, 
                   "argument3": { 
                       "name": "RFID", 
                       "type": "number" 
                   } 
               } 
           }, 
            "hasOutputData":{ 
               "type":{ 
                   "argument1": { 
                       "name": "ErrorID", 
                       "type": "number" 
                   } 
               } 
            }, 
            "operation":"Update" 
         } 
     }]} 

 
Figure 7-1: Sample Recipe snippet for smart factory application in UC4 
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8 ANNEX II – PERFORMANCE AND SCALABILITY EVALUATION OF THE 

MAPPING TEMPLATE COMPONENT 
 
This annex provides a detailed description of the quantitative assessment of the 
performance and scalability of the mapping-template component reported in Section 
3.2.1.3.  
 
All the diagrams presented in this section report the average metrics over multiple test 
repetitions on a logarithmic scale (log10). 

8.1 GTFS MADRID BENCHMARK 
 
For an initial assessment of the performance and scalability of the mapping-template 
tool, we utilized the GTFS-Madrid-Bench67  following the methodology and the RML 
mappings established in the evaluation by Arenas et al. [Arenas21]. The benchmark 
includes a variety of (R2)RML mappings and a generator for producing input data 
sources in different formats and sizes. We focused on three data formats (CSV, XML, and 
JSON) and tested three scaling factors (1, 10, and 100), comparing the mapping-
template tool to the morph-kgc v2.3.168 RML processors. The configuration details and 
the raw data results are made available online69.  
 
Morph-kgc was chosen for evaluation due to its state-of-the-art performance and 
scalability with respect to other RML mapping processors [Arenas22]. We executed the 
morph-kgc processor in both parallel (morph-kgc-p) and sequential (morph-kgc) modes. 
We generated a set of templates using MTL that followed the same mapping rules 
defined for the RML mappings, but that could be executed directly via the mapping-
template tool. To evaluate the impact of join conditions on the mapping-template, we 
defined two types of mapping templates: (i) the first one performs join operations 
between data frames (mapping-template) (ii) the second one leverages the generation 
of corresponding IRIs to obtain the same output without performing join operations 
(mapping-template-nj). 
 
For the evaluation, we measured execution time (with a timeout of 24 hours) and the 
maximum memory usage (with each processor running inside a Docker container limited 
to 64GB memory). The experiments were conducted on a virtual machine equipped with 
12 Intel(R) Xeon(R) E-2136 CPUs running at 3.30GHz, along with 128 GB RAM and SSD 

 
67 https://github.com/oeg-upm/gtfs-bench  
68 https://github.com/morph-kgc/morph-kgc/releases/tag/2.3.1  
69 https://github.com/cefriel/mapping-template-eval/tree/main/engines-compare  

https://github.com/oeg-upm/gtfs-bench
https://github.com/morph-kgc/morph-kgc/releases/tag/2.3.1
https://github.com/cefriel/mapping-template-eval/tree/main/engines-compare
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storage. Figure 8-1 illustrates the metrics recorded for each configuration, with each test 
repeated three times. 
 

 
Figure 8-1: Evaluation on the GTFS Madrid Benchmark between mapping-template and morph-kgc 

The findings indicate that the mapping-template tool executes the task with reduced 
execution time while demonstrating comparable memory consumption across all three 
data formats. In contrast, the morph-kgc with parallel processing encountered memory 
issues when handling input data at scale 100. Notably, while adding join conditions 
typically impacts the performance of processors using RML, the metrics for the mapping-
template tool showed minimal variation during the evaluation.  
This outcome can be attributed to the tool's advantage from the effective and optimized 
execution of templates offered by the Velocity Engine. However, as highlighted by the 
test cases presented in the following paragraphs, the execution time comes at the cost 
of higher memory consumption, and this may be problematic when increasing the input 
size or in the presence of constraints on memory resources available.  
Additionally, it's worth noting that the MTL enables users to refine the mapping rules to 
fit specific mapping scenarios, e.g., minimizing the number of data frames extracted 
from the input sources. While fully declarative mapping languages aim at introducing 
these optimisations without explicit modifications to the mapping rules, not all the 
optimisations may be automatically inferred by an engine by only relying on the 
mapping rules, i.e., without knowing the actual data on which the set of mapping rules 
is applied. In these contexts, the flexibility enabled by MTL can lead to great advantages 
in terms of performance. Currently, an extension of RML is being investigated to allow 
users to specify data access methods for improved performance declaratively 
[Vleeschauwer24]. 
 
Lastly, it's important to mention that although the inputs and mappings used in the 
evaluation did not produce duplicate triples, the execution time for morph-kgc could 
still be affected due to its inherent implementation that ensures the elimination of 
duplicate triples before output serialization. 
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8.2 KNOWLEDGE GRAPH CONSTRUCTION CHALLENGE 
 
To further examine and compare the performance of the mapping-template tool against 
other mapping processors, we participated in track 2 of the Knowledge Graph 
Construction Challenge 2024 70 . This track focused on performance comparison by 
requiring each tool to convert input data sources to RDF according to specific RML 
mapping rules. The first part of the challenge utilized the GTFS-Madrid-Bench to 
evaluate the tools' behaviour with varying scales of the same data sources (1, 10, 100, 
1000) and incorporated diverse combinations of data source types (tabular, files, 
nested, mixed). The second phase focused on various parameters that could influence 
the mapping process, establishing different test cases by altering the number of data 
records, properties, duplicate values, empty values, mapping rules 
(PredicateObjectMaps), as well as join operations. Although different types of joins were 
tested, we do not report those results here as no significant differences were observed. 
The organizers provided a tool for reproducible execution of the challenge, along with 
metric collection and the resulting outcomes. Each participant received the same virtual 
machine with the following specifications: 4 vCPUs, 16 GB RAM, 130 GB HD, running 
Ubuntu OS. The complete testing specifications and the set of raw results from each tool 
are available on Zenodo71. 
 
We took part in the challenge before the introduction of direct support for RML 
mappings in the mapping-template tool. Consequently, we manually created an MTL 
template for a limited set of test cases to carry out the same knowledge graph 
construction task. We did not explore test cases that varied the number of joins and 
mapping rules due to the need to manually adapt numerous mapping files. Despite the 
penalty for executing a limited set of test cases, the mapping-template tool secured 
third place overall in the challenge. Notably, the mapping-template tool excelled in 
execution time and CPU usage, though it did not perform as well in terms of memory 
consumption. 
 
To achieve a comprehensive performance comparison, we supplemented the challenge 
results by executing the same test cases with the updated version of the mapping-
template, providing the RML mapping files directly as input. The evaluation 
configuration and raw results are available online72. In the following sections, we will 
report and discuss the challenge results alongside the ones recorded afterwards 
executing the mapping-template with RML mappings (referred to as mapping-template-
rml in the figures). Each test was conducted five times, and we present the results for 
the other three mapping engines involved in both parts of track 2: FlexRML 73 , 
RPT/Sansa74, and RML-Streamer75 with RML-view-to-CSV [Vleeschauwer24]. 
 

 
70 https://kg-construct.github.io/workshop/2024/challenge.html  
71 https://zenodo.org/records/11577087  
72 https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024  
73 https://github.com/wintechis/flex-rml  
74 https://github.com/Scaseco/R2-RML-Toolkit 
75 https://github.com/RMLio/RMLStreamer  

https://kg-construct.github.io/workshop/2024/challenge.html
https://zenodo.org/records/11577087
https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024
https://github.com/wintechis/flex-rml
https://github.com/Scaseco/R2-RML-Toolkit
https://github.com/RMLio/RMLStreamer
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Figure 8-2: Evaluation on the KGCW Challenge for GTFS-scale and GTFS-heterogeneity 

 
Figure 8-2 shows the results for the first part related to the GTFS-Madrid-Bench. The 
performance of mapping-template-rml is not directly comparable to that of the 
mapping-template when executing MTL mappings. This disparity arises from the 
necessity to incorporate additional checks for accurate output generation in the generic 
case of a translation from RML to MTL. In this case, several optimisations are not applied, 
as done instead during the manual definition of templates.  
In the heterogeneity tests, mapping-template-rml failed to run three tests due to the 
use of a JSON file for the Shapes file, which led to out-of-memory errors due to the 
challenge of optimizing multiple JSONPath accesses to the input file. 
 

 
Figure 8-3: Comparison on GTFS-Scale 1 to evaluate the overhead of RML compilation in the mapping-template 

 
Figure 8-3 illustrate the GTFS-Madrid-Bench results for scale-1, incorporating metrics 
from a case (mapping-template-rm-mtl) in which an MTL template generated from RML 
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is executed directly with the tool. This case eliminates the translation overhead that is 
usually introduced when providing RML mappings directly to the mapping-template 
tool. This diagram indicates that performance differences cannot be solely attributed to 
this overhead, even with small input files. 
 
Figure 8-4 and Figure 8-5 detail the results for all other test cases influenced by different 
parameters affecting knowledge graph construction. The previously mentioned trends 
are observable across these test cases. Overall, it is evident that the mapping-template 
delivers good execution times, although it struggles with memory optimization. 
Furthermore, the tool performs better with smaller input sizes. Results from executing 
manually defined MTL templates directly highlight the benefits of tailoring mapping 
templates to specific mapping scenarios. 
 

 
Figure 8-4: Evaluation on the KGCW Challenge for mappings, records, join parameters 

 
Figure 8-5: Evaluation on the KGCW Challenge for empty values, duplicates and properties parameters 
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9 ANNEX III – EVALUATION OF UC2 DATAOPS PIPELINE ON 

DIFFERENT DEPLOYMENT TEMPLATES 
 
This annex provides visualisations to compare the behaviour of different deployments 
of the DataOps pipeline discussed in the evaluation in Section 3.3.1.  

9.1 CONVERSION TIME AND INPUT SIZE 
 
For the evaluation of conversion time and input size, we visualize the metrics trend over 
time in the reported graphs. The metrics are normalized between 0 and 1 to show the 
overall trends.  
It can be noticed that the input size varies continuously and there is no specific trend. 
Nevertheless, the average value is, in all cases, a medium value between maximum and 
minimum.  
On the conversion time, Temurin recorded values with lower variance but greater spikes 
not correlated with the input size. GraalVM recorded more stable values on average. 
 
 

 
Figure 9-1: Comparison of conversion time and input size over time for Temurin and GraalVM 
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Native images recorded higher variance in the conversion time despite keeping the 
average much lower than the maximum values registered. 
 

 
Figure 9-2: Comparison of conversion time and input size over time for Native 

9.2 MEMORY AND CPU UTILISATION 
 
These visualizations comprehensively compare memory and CPU consumption across 
the different Docker images.  
The following comparisons of CPU/Memory utilization are presented: 

▪ Temurin – GraalVM – GraalVM-Native 
▪ Spring-Temurin – Spring-GraalVM – Spring-GraalVM-Native 
▪ Temurin – Spring-Temurin 
▪ GraalVM – Spring-GraalVM 
▪ Native – Spring-Native 

9.2.1 Temurin – GraalVM – GraalVM-Native 
 
The test results indicate that for Docker images using the core version, CPU performance 
for Temurin and GraalVM is substantially similar and slightly better compared to the 
Native version. Additionally, all of them exhibit an initial spike. Regarding memory, 
Temurin and GraalVM images also have the same performance. However, there is a 
noticeable improvement in the Native version  for the memory usage with respect to 
the other images. 
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9.2.2 Spring-Temurin – Spring-GraalVM – Spring-GraalVM-Native 
 
As shown in the graphs below, the CPU performance of the three tested Docker Spring 
images is substantially similar, and all exhibit an initial spike that is much more 
pronounced for the core version than the native version. In terms of relative Memory 
comparison, however, the Spring GraalVM version shows slightly better performance 
compared to the core version. It is, however, very evident that the native version 
exhibits a much lower memory usage compared to the other two images.  

Figure 9-3: CPU Comparison of Temurin, GraalVM and Native 

Figure 9-4: Memory Comparison of Temurin, GraalVM and Native 
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Figure 9-6: Memory Comparison of Spring Temurin, Spring GraalVM and Spring Native images 

9.2.3 Temurin – Spring-Temurin 
 
The results of this comparison demonstrate that no significant differences were found 
between the core and spring versions of the Temurin image. The core version exhibits 
slightly better performance in terms of memory usage, while the spring version shows 
slightly better behaviour in terms of CPU usage, although it exhibits a much more 
pronounced initial spike compared to the core version. 

Figure 9-5: CPU Comparison of Spring Temurin, Spring GraalVM and Spring Native images 
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9.2.4 GraalVM – Spring-GraalVM 
 
In this test, as with the previous one, no substantial differences are highlighted between 
the two tested Docker images. However, also in this case, a slightly better performance 
in terms of memory is noted for the core version and a slightly better behaviour in terms 
of CPU for the Spring version, which also in this case shows a more pronounced initial 
spike compared to the core version. 

Figure 9-7: CPU Comparison of Temurin and Spring Temurin 

Figure 9-8: Memory Comparison of Temurin and Spring Temurin 
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Figure 9-10: Memory Comparison GraalVM and Spring GraalVM 

9.2.5 Native – Spring-Native 
 
Regarding the comparison of native versions, as can be easily seen in the graphs below, 
the native spring image shows better performance in terms of both memory and CPU 
compared to the native core version. However, as with all other cases, even for the 
native image, the spring version experiences a much higher initial CPU spike compared 
to the native core version. 
 

Figure 9-9: CPU Comparison GraalVM and Spring GraalVM 
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Figure 9-11: CPU Comparison Native and Spring Native Figure 9-12: Memory comparison Native and Spring Native 


