

SmartEdge

Deliverable D5.2

First implementation of low-code

programming tools for edge intelligence

Lead Editor Trung Kien Tran (BOSCH)

Contributors M. Bagheri (CONV), L. Bassbouss (FhG), D Bowden (DELL), P. Cudre-

Mauroux (FRIB), K. Dorofeev (SAG), D. Anicic (SAG), A. Ganbarov

(TUB), M. Grassi (CEF), X. Guo (TUB), I. Kosonen (AALTO), A. Le-

Tuan (TUB), M. Nguyen-Duc (TUB), G. Michelangelo, F. Cugini

(CNIT), M. Milich (BOSCH), A. Paul (FhG), L. Bassbouss (FhG), A.

Zoubarev (FhG), S. Paul (TUB), E. Petrova (IMC), D. Raggett(W3C),

M. Scrocca (CEF), D. Tran(BOSCH), TK. Tran, L. Halilaj (BOSCH), J.

Yuan (TUB), N. Zilberman (UOXF)

Version 4.1

Date 19.12.2024

Distribution PU

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

Semantic Low-code Programing

Tools for Edge Intelligence
This project is supported by the European Union’s Horizon RIA research

and innovation programme under grant agreement No. 101092908

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

DISCLAIMER

This document contains information which is proprietary to the SmartEdge (Semantic Low-code

Programming Tools for Edge Intelligence) consortium members that is subject to the rights and

obligations and to the terms and conditions applicable to the Grant Agreement number

101092908. The action of the SmartEdge consortium members is funded by the European

Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,

reproduced, modified, or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the SmartEdge consortium members. In such case, an

acknowledgement of the authors of the document and all applicable portions of the copyright

notice must be clearly referenced. In the event of infringement, the consortium members

reserve the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the

European Commission. Neither the SmartEdge consortium members as a whole, nor a certain

SmartEdge consortium member warrant that the information contained in this document is

suitable for use, nor that the use of the information is accurate or free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

REVISION HISTORY

GLOSSARY

Revision Date Responsible Comment

0.1 01/04/2024 BOSCH Layout and Structure

0.2 01/05/2024 BOSCH Initial content

0.3 01/07/2024 BOSCH Updated layout and structure

0.4 01/09/2024 BOSCH 50% of content

0.5 01/10/2024 BOSCH 75% of content

0.6 01/11/2024 BOSCH 95% of content

1.0 07/11/2023 BOSCH All content and assigned reviewers

2.0 21/11/2024 BOSCH Revised version

3.0 30/11/2024 BOSCH Revised version with new section numbers

4.0 09/12/2024 BOSCH Submitted for Quality Review

4.1 19/12/2024 BOSCH Revised version after quality check

Acronym Description

ABR Adaptive Bitrate Streaming

AMR Autonomous Mobile Robot

API Application Program Interface

ARM Acorn Reduced Instruction Set Machine

CAD Computer Aided Design

CAN bus Controller Area Network bus

CaS Compare and Swap

CCTV Closed Circuit Television

CDN Content Delivery Network

CNN Convolutional Neural Network

COCO Common Object in Context

CPU Central Processing Unit

CQELS Continuous Query Evaluation over Linked Streams

CXL Compute Express Link

DASH Dynamic Adaptive Bitrate over HTTP

DCAT Data Catalog vocabulary

DDS Data Distribution Services

DETR Detection Transformer

DKG Dynamic Knowledge Graph

DMA Direct Memory Access

DPU Data Processing Units

D-RDMA Declarative Remote Direct Memory Access

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

DSL Domain-specific Language

FaA Fetch and Add

FAIR Findability, Accessibility, Interoperability, and Reusability of digital asset

FPGA Field Programmable Gate Arrays

FRCNN Fast Region-based Convolutional Neural Network

GDS Global Data Space

GeoSPARQL Resource Description Frame geospatial query language

GPM Graph Pattern Mining

GPS Global Positioning System

GPU Graphical Processing Unit

HLS Hypertext Transfer Protocol Live Streaming

HPC High-performance Computing

HTTP Hypertext Transfer Protocol

IDM Identity Management

IMU Inertial Measurement Unit

IoT Internet of Things

IoU Intersection over Union

IRI Internationalized Resource Identifier

ISD Integrated Surface Dataset

iWARP Internet Wide Area Remote Direct Memory Access Protocol

JPEG Joint Photographic Experts Group image format

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data

JVM Java Virtual Machine

LAN Local Area Network

LiDAR Light Detection and Ranging

LLM Large Language Model

MAC Media Access Control

MAT Match-action Tables

MAU Match-action Unit

MEMS Micro-Electro-Mechanical Systems

ML Machine Learning

MOM Message-Oriented Middleware

NARF Normal Aligned Radial Feature

NAS Neural Architecture Search

NAV ROS Navigation Stack

NCDC National Climatic Data Center

NCR Non-contiguous Regions

NIC Network Interface Card

OMG Object Management Group

ONOS Open Network Open System

OBU On-board Unit (V2X wireless communication hardware inside a

connected vehicle)

P2P Peer-2-peer

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

P4 Programming Protocol-independent Packet Processors

PNG Portable Network Graphics

QET Query Execution Time

QoS Quality of Service

QP Queue Pairs related to Remote Direct Memory Access

QR Quick Response an evolution of bar codes

RAM Random Access Memory

RCNN Region-based Convolutional Neural Network

RTSP Real-Time Streaming Protocol

RDF Resource Description Frame

RDMA Remote Direct Memory Access

REST Representational State Transfer

RGB Red, Green, Blue referring to color images

RGBD Red, Green, Blue, Depth referring to color images with a depth channel

RML Resource Description Frame Mapping Language

RoCE Remote Direct Memory Access over Converged Ethernet

ROS Robot Operating System

RPC Remote Procedure Call

RSU Road-side Unit

SGE Scatter-gather Element

SHACL Shapes Constraint Language

SLAM Simultaneous Localization and Mapping

SPARQL Resource Description Frame query language

TCP Transmission Control Protocol

TD Thing Description part of the WoF

TDD Thing Description Directory part of the WoF

TTL Time-to-live

UDP User Datagram Protocol

URDF Unified Robot Description Format

URI Uniform Resource Identifiers

USB Universal Serial Bus

UUID Universally Unique Identifier

V2X Vehicle to everything

WebRTC Web Real-Time Communication

WoF Web of Things

WR Work Request

YOLO You Only Look Once a common object detector

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

EXECUTIVE SUMMARY

Deliverable D5.2 reports the first implementation along with the revised design of low-code

programming tools for Edge Intelligence in the SmartEdge project folowing the desing reported

in D5.1. The document focuses the first implementation and the next design of four parts of the

toolchain corresponding to four tasks of WP5: 1) Semantic-driven Multi-modal sensor fusion for

edge devices; 2) Swarm Elasticity via Cloud-Edge Interplay; 3) Adaptive Coordination and

Optimization; 4) Cross-layer toolchain for Device-Edge-Cloud Continuum.

WP5 aims to provide an integrated toolchain to lower the effort in building Edge Intelligence.

Based on semantic descriptions of sensing and computing capabilities as well as data queries,

the toolchain will decouple the application logic to underlying complicated software, hardware

and networking elements. On the other hand, the semantic descriptions and specifications are

the key enabler to integrate the elements into execution pipelines at run time without a prior

knowledge of them. Hence, the semantic data model is the unified data presentation as the

integration point for all components designed in D5.1. Firstly, the sensor fusion of multimodal

data of T5.1 will use RDF as the intermediate data representation among the operations that

provide the unified input/output data presentations to operators that can be processed and

integrated in T5.2, T5.3 and T5.4. Secondly, the declarative programming approach for low-code

programming across the layers (e.g, network, RDMA, sensor fusion, orchestration, optimization

and runtime) can provide different domain-specific languages (DSLs) that be seamlessly

integrated via RDF data model and graph query patterns. In particular, T5.2 allows T5.1 to

offload their sensor fusion operations that can be expressed a graph query patterns and similarly

T5.3 also can orchestrate the federated processing workloads represented in SPARQL-like query

languages. Eventually, the SmartEdge runtime pushes one step further in using RDF data as

dynamic knowledge graphs (DKGs) that unifies traditional knowledge graphs and semantic

streams. DKGs help to integrate sensory data from T5.1 with operational and environment data,

e.g. network telemetries, hardware configuration, training data, host environments, into

queryable form with graph query language like SPARQL so that SmartEdge nodes can

programmatically access it in a unified via in a distributed fashion.

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

Table of Contents

1 Introduction ... 1

1.1 Relation of WP5 to other WPs ... 2

1.2 Artifacts for Low-code Programming Tools for Edge Intelligence.................................. 3

1.3 Mapping KPIs to Artifacts .. 4

2 Semantic-driven Multimodal Stream Fusion For Edge Devices ... 6

2.1 Main Components and Functionalities .. 6

2.2 Components Implementations .. 6

2.2.1 Vision Scene Understanding .. 6

2.2.2 Integrate Multi-modal Sensor Data Sources .. 19

2.2.3 Media Stream Processing .. 27

2.2.4 Semantic Data Stream Fusion and Declarative Mapping Rules 29

3 Swarm elasticity via edge-cloud interplay ... 36

3.1 Main Components and Functionalities .. 36

3.1.1 Declarative Data Exchange .. 36

3.1.2 Accelerated Operators ... 37

3.1.3 Runtime Optimizer .. 38

3.1.4 Low-Code, Declarative Programming .. 38

3.2 Components Implementations .. 39

3.2.1 Declarative Data Exchange Implementation .. 39

3.2.2 Offloaded Operators Implementation ... 46

3.2.3 Runtime Optimizer Implementation .. 52

3.3 Empirical Results and Demonstration .. 59

3.3.1 Declarative Data Exchange .. 59

3.3.2 Face Blurring .. 60

3.3.3 Accelerated Graph Operator ... 61

4 Swarm Coordination and Orchestration .. 64

4.1 Main components and Functionalities .. 64

4.2 Components Implementation .. 67

4.2.1 Swarm Adaptive Coordinator... 67

4.2.2 Swarm Dynamic Orchestrator .. 74

4.2.3 Swarm Optimizer ... 77

4.3 Empirical Results and Demonstrations .. 77

4.3.1 Object tracking and counting demo of UC2 ... 78

4.3.2 Demonstration Semantic SLAM map builder of UC3 ... 82

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

5 Cross-layer tool chain for Device-Edge-Cloud CONTINUUM.. 86

5.1 Main Components and Functionalities .. 86

5.2 Components Implementations .. 88

5.2.1 SmartEdge Runtime ... 88

5.2.2 SmartEdge Plugins ... 95

5.2.3 Low-code IDE ... 103

6 Conclusions .. 120

Table of Figures

FIGURE 1-1. FROM SMARTEDGE LOW-CODE TOOLCHAIN TO SMARTEDGE RUNTIME (FROM D5.1) 1

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

FIGURE 1-2. DEPENDENCIES OF ARTIFACTS OF WP3, WP4, AND WP5 ... 2
FIGURE 1-3. INTERACTION BETWEEN RECIPE (WP3), SWARM ORCHESTRATOR (WP5) AND NETWORK SWARM COORDINATOR

(WP4) FOR THE FORMATION OF THE SWARM [D3.1] .. 3
FIGURE 2-1. OVERVIEW OF THE SEMANTIC MULTIMODAL STREAM FUSION PIPELINE. ... 6
FIGURE 2-2. THE OVERVIEW OF SCENE GRAPH GENERATION. THE PIPELINE TAKES AN IMAGE AS AN INPUT AND GENERATES A

VISUALLY GROUNDED SCENE GRAPH. ... 7
FIGURE 2-3. MOTION DETECTION USING BOUNDING BOXES MATCHING BETWEEN FRAMES. .. 8
FIGURE 2-4. PREDEFINITION OF OBJECT ANGLES, DISTANCES AND RELATIVE POSITIONS BETWEEN TWO OBJECTS. 8
FIGURE 2-5. A FRAGMENT OF THE SOURCE CODE FROM THE CURRENT IMPLEMENTATION .. 11
FIGURE 2-6. VISUALIZATION OF INITIAL RESULTS. FOR CLARITY, SCENE GRAPHS ARE SHOWN ONLY FOR TWO CARS WITHIN AN 8-

METER RADIUS. HERE FOR EACH RELATION, WE SHOW THE ANGLE AND DISTANCE BETWEEN THE TWO OBJECTS. 11
FIGURE 2-7. MANUFACTURING SCENE GRAPH SCHEMATIC. .. 13
FIGURE 2-8. ILLUSTRATION OF RACK MOVING BETWEEN OPERATIONAL AREAS (LEFT) AND A 2D OCCUPANCY MAP (RIGHT) ... 14
FIGURE 2-9. MEMS LIDAR CAMERAS (LEFT) AND STEREOSCOPIC DEPTH CAMERAS (RIGHT) .. 15
FIGURE 2-10. RACK WITH QU IDENTIFICATION CODE AND FLOOR MOUNTED QR CODE AND CALIBRATION SQUARES 15
FIGURE 2-11. SEMANTIC SCENE GRAPH ... 18
FIGURE 2-12. TENTATIVE APPROACH FOR THE SENSOR FUSION ... 21
FIGURE 2-13. LOOP DATA OF SEVERAL LANES RECEIVED BY A DATA FUSION NODE (AT JUNCTION FI.HELSINKI.270). 22
FIGURE 2-14. OUTPUT OF LOOP-RADAR-SIGNAL FUSION FOR ONE ROAD LANE, PERFORMED BY A DATA FUSION NODE (AT

JUNCTION FI.HELSINKI.270). ... 22
FIGURE 2-15. NATS MQTT INTERFACE: INTEGRATION OF HETEROGENEOUS PUBLISH/SUBSCRIBE MESSAGING TECHNOLOGIES.

 ... 23
FIGURE 2-16. DATA FLOW OF SENSOR FUSION AND TRAFFIC INDICATORS FOR SMART TRAFFIC MANAGEMENT (GREY

RECTANGLE BOXES INDICATE A PROCESS WHILE OTHER BOXES INDICATE INPUT/OUTPUT DATA) 25
FIGURE 2-17. EXAMPLE OF RECIPE CONFIGURATION. TRAFFIC AREAS SUBJECT TO TRAFFIC MANAGEMENT, GIVEN AS STATIC

INPUT (AS POLYGONS) TO THE CAMERA OBJECT DETECTION RECIPE. ... 26
FIGURE 2-18. MEDIA STREAM PROCESSING PIPELINE ... 27
FIGURE 2-19. UC1 MEDIA STREAMING PIPELINE ... 28
FIGURE 2-20. STREAMING SERVER EXTENSION AND ITS INTERACTIONS .. 29
FIGURE 2-21. THE CONCEPT IN WIKIDATA AND A PART OF THE INTERNAL ONTOLOGY .. 30
FIGURE 2-22: OVERVIEW OF THE DATAOPS PIPELINES FOR SEMANTIC DATA STREAM FUSION. 31
FIGURE 2-23: DEMONSTRATOR DATAOPS PIPELINE FOR THE HELSINKI USE CASE. STATIC DATA AND REAL-TIME DATA ARE

CONVERTED TO AN RDF REPRESENTATION AND THEN MERGED FOR FURTHER POSSIBLE PROCESSING 32
FIGURE 2-24: EXAMPLE MEASUREMENT FROM ONE HELSINKI RADAR. THE POSITION, LENGTH, SPEED AND BEARING OF A

VEHICLE ARE MEASURED. THE CLASS OF THE VEHICLE IS ALSO IDENTIFIED, IN THIS CASE THE '4' CLASSIFICATION

CORRESPONDS TO A CAR. .. 33
FIGURE 2-25: AN EXAMPLE OF A COMPLETE MAPPING PROCESS: TRANSFORMING JSON DATA FROM A SINGLE RADAR AND ONE

OF ITS OBSERVATIONS INTO THE FINAL RDF REPRESENTATION. ... 34
FIGURE 2-26. SNIPPET OF THE MTL MAPPING PERFORMING THE CONVERSION FOR THE DATAOPS PIPELINE SHOWN IN FIGURE

2-23. IN THE PORTION SHOWN, OBSERVATIONS FROM THE INPUT JSON FILE ARE CONVERTED TO RDF TURTLE. 35
FIGURE 3-1. CONTIGUOUS REGIONS ARE INSUFFICIENT TO CAPTURE DATA PATTERNS. NON-CONTIGUOUS REGIONS, SUCH AS

STRIDED REGIONS, CAN BE USED TO DESCRIBE DATA AND GAPS IN A COMPACT WAY, DECLARATIVE, AND HIGH-LEVEL

MANNER AND TO OPTIMIZE RDMA. ... 40
FIGURE 3-2. THE IMPLEMENTATION OF D-RDMA FROM A SYSTEM’S PERSPECTIVE (A) AND FROM A NIC’S PERSPECTIVE (B).

THE APPLICATION SETS UP A CONNECTION AS USUAL (1). IT USES DECLARATIVE, NON-CONTIGUOUS REGIONS INSTEAD

OF SGES TO POST WORK TO THE CARD (2). THE CARD DETERMINES A DMA SCHEDULE UPON RECEIVING THE NCR LIST

(3,3A,3B). THE CARD ISSUES THE DMAS (4). THE CARD USES THE ROW WINDOW FOR THAT REQUEST TO FIND AND

PACKETIZE THE DATA (5,5A,5B). .. 40
FIGURE 3-3. (LEFT) CXL ENSURING DATA COHERENCE ACROSS TWO CPUS: TO ACCESS OR MODIFY THE CONTENTS OF A

MEMORY ADDRESS, A CORE BRINGS A COPY OF IT TO ITS CACHE (1). THIS CAN BE TRIGGERED BY ISSUING A LOAD OR A

STORE INSTRUCTION. UPON RECEIVING THE INSTRUCTION, THE CACHE CONTROLLER ISSUES A REQUEST TO EITHER GET A

COPY OR PUT (WRITE) IT‘S COPY OF THE MODIFIED CONTENT FROM/BACK TO MEMORY (2). THE DIRECTORY

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

CONTROLLER RECEIVES THIS MESSAGE AND EXECUTES THE REQUIRED MEMORY ACCESS, EITHER SENDING A COPY OF THE

READ DATA TO THE CACHE CONTROLLER OR ACKNOWLEDGING THAT THE MODIFIED DATA WAS WRITTEN (3). THE CACHE

CONTROLLER CAN THEN SIGNAL TO THE CORE THAT THE INSTRUCTION IS COMPLETE. NOTE THAT IF THE ADDRESS

REQUIRED WERE HELD BY A REMOTE DIRECTORY CONTROLLER, THE CACHE CONTROLLER WOULD HAVE TARGETED IT

INSTEAD (3). (RIGHT) CXL DATA COHERENCE WITH A MEMORY EXPANDER DEVICE: THE CACHE CONTROLLER ASKS OR

SENDS A CACHE LINE AS BEFORE BUT IS UNAWARE OF WHO IS BACKING THAT ADDRESS. UPON NOTICING THAT THE

REQUEST IS FOR THE EXPANDED MEMORY AREA, THE DIRECTORY CONTROLLER ISSUES THE PROPER COMMAND TO THE

DEVICE CONTROLLER (3), WHICH IN TURN INTERACTS WITH THE LOCAL MEMORY (4) AND RESPONDS. IT IS THE

DIRECTORY CONTROLLER THAT SENDS THE CACHE LINE OR THE ACKNOWLEDGMENT BACK AS IF THE LINE ACCESSED WAS

LOCAL (5). ... 42
FIGURE 3-4.(LEFT) OUR DEVICE CAN BE ACCESSED AS A CONVENTIONAL SSD OR THROUGH CXL. IN THE LATTER CASE, THE

MESSAGES TO A GIVEN MEMORY ADDRESS RANGE WILL BE DIRECTED TO ITS ASSIGNED KERNEL. THE KERNEL CAN CHOOSE

WHICH KIND OF STORAGE TYPE TO USE AND HOW. (RIGHT) AS A CXL TYPE 2 DEVICE, OUR DEVICE LEARNS ABOUT THE

EARLY INTENT TO WRITE. THE REASON IS THAT, TO GIVE A CORE EXCLUSIVE ACCESS TO A MEMORY ADDRESS, THE

DIRECTORY CONTROLLER MUST INVALIDATE ALL ACCESSES GIVEN BEFORE. THE INVALIDATION IS AN EARLY SIGNAL TO THE

TYPE 2 DEVICE THAT IT SHOULD PREPARE TO HEAR A WRITE REQUEST FOR THAT ADDRESS IN THE SHORT FUTURE, GIVING

IT AMPLE TIME TO PREPARE. .. 43
FIGURE 4-1. OVERVIEW OF THE BUILDING BLOCKS FOR ADAPTIVE COORDINATION, DYNAMIC ORCHESTRATION, AND

OPTIMIZATION WITHIN THE SMARTEDGE SWARMS. .. 65
FIGURE 4-2. SEQUENCE DIAGRAM OF COORDINATION AND ORCHESTRATION PROCESS IN THE SMARTEDGE SYSTEM 66
FIGURE 4-3. PROCESSING PIPELINE FOR COUNTING VEHICLES IN AN OBSERVATION ZONE .. 68
FIGURE 4-4. JSON-LD OF THE SEMANTIC DESCRIPTION FOR A REQUIRED SKILL TO OBSERVE AN OPTION ZONE. 69
FIGURE 4-5. JSON-LD SNAPSHOT OF SEMANTIC DESCRIPTION FOR A CAMERA AT JUNCTION 270, HELSINKI 70
FIGURE 4-6. JSON-LD SNAPSHOT OF SEMANTIC DESCRIPTION FOR A CAMERA AT JUNCTION 270, HELSINKI 71
FIGURE 4-7. OVERVIEW OF THE INTEGRATION DKG WITH ONOS CONTROL PLAN .. 72
FIGURE 4-8. OVERVIEW OF THE WORKFLOW OF P4-BASED RDFIZER ... 73
FIGURE 4-9. SCREEN SHOT OF RDF ANNOTATION OF P4-BASED METADATA ON MININET. .. 74
FIGURE 4-10. EXAMPLE OF AN EXECUTION PLAN GENERATED BY THE ORCHESTRATOR IN JSON FORMAT. 76
FIGURE 4-11. WORKING PIPELINE .. 78
FIGURE 4-12. SCREENSHOT OF CLI ... 79
FIGURE 4-13. SCREENSHOT OF CLI ... 79
FIGURE 4-14. SCREENSHOT OF CLI ... 80
FIGURE 4-15. SCREENSHOT OF CLI ... 80
FIGURE 4-16. SCREENSHOT OF CLI ... 80
FIGURE 4-17. SCREENSHOT OF CLI ... 81
FIGURE 4-18. SCREENSHOT OF CLI ... 81
FIGURE 4-19. SCREENSHOT OF CLI ... 81
FIGURE 4-20. SCREENSHOT OF CLI ... 82
FIGURE 4-21. SCREENSHOT OF CLI ... 82
FIGURE 4-22. DEMONSTRATION OF DETECTION AND COUNTING VISUALIZED AT CONVEQS JUNCTION 266, HELSINKI, FINLAND

 ... 82
FIGURE 4-23. GROUND VEHICLE ROBOTS EQUIP WITH SENSORS. ... 83
FIGURE 4-24. THE ACTUAL FLOOR PLAN ... 84
FIGURE 4-25. SEMANTIC SEGMENTATION .. 85
FIGURE 4-26. PART OF A 2D OCCUPANCY MAP GENERATED BY A ROBOT MOVING FROM ROOM 4 TOWARD THE LONG

HALLWAY. ... 85
FIGURE 5-1. OVERVIEW OF THE DESIGN AND INITIAL IMPLEMENTATION OF THE SMARTEDGE TOOLCHAIN. 86
FIGURE 5-2. OVERVIEW OF ARCHITECTURE OF THE MESSAGE MANAGER .. 89
FIGURE 5-3. TABLE OF REQUEST TYPE SUPPORTED IN THE CURRENT IMPLEMENTATION. ... 90
FIGURE 5-4. PRIMITIVE RUNTIME ... 94
FIGURE 5-5. P4 RUNTIME PLUGIN BETWEEN COORDINATOR AND AP OR SMART NODE .. 96

D5.2 First implementation of low-code programming tools for edge intelligence SmartEdge GA 101092908

D5.2 SmartEdge GA 101092908

1

1 INTRODUCTION
D5.2 reports the first implementation of the design of the low-programming tools for edge

intelligence (D5.1). In the first implementation of such tool, we report implemented artifacts

grouped by tasks as following: i) Artifacts related to semantic-based multimodal sensor fusion

for edge devices (Section 2 for T5.1), ii) Artifacts related to Swarm elasticity via edge-cloud

interplay (Section 3 for T5.2); iii) Artifacts related to Adaptive Coordinator and Optimization

(Section 4 for T5.3); iv) Artifacts related to Cross-layer toolchain for device-edge-cloud

continuum (Section 5 for T5.4). The design of such tools employs the same approach for low-

code programming, declarative programming (cf Section 1.1 of D5.1). The artifacts of such tools

along with the ones produced in WP3 and WP4 will be integrated and deployed as a runtime for

a SmartEdge Swarm node as illustrated in following Figure 1-1.

Figure 1-1. From SmartEdge low-code toolchain to SmartEdge runtime (from D5.1)

Recall from D5.1 that the hallmark of low-code programming of SmartEdge lies in its declarative

programming model, an approach that introduces delarative query languages or DSLs so that

domain expert could specify the application logics according to domain-spefic workflows

without having to write imperative code in C++/Java/Python for most underlying software

components. At its core, D5.2 realizes this model by using Dynamic Knowledge Graphs (DKG) to

interlink domain-expert knowledge with input data and necessary components. DKG is based on

data schema provided in WP3 and extended to UCs with the integration with knowledge base

to represent runtime context and networking configuration. DKG serves as the foundation for

constructing runtime instances and workflows in artifacts of T5.3 and T5.4 that edge devices can

execute or interpret.

The domain experts in SmartEdge are UC owners, traffic-, car-, or robot-engineers who will

declare the ‘what’ a swarm of edge nodes should do via Domain-Specific Languages (DSLs) that

embody semantics familiar to their application domains, e.g. traffic or factory floor, called

Semantic DSLs. Such DSLs are constructed from standardized data models and ontologies, e.g.

RDF, SPARQL, SHACL and Recipes (cf. D3.1). By reducing the complexity of traditional

programming constructs, e.g. C++ or python, Semantic DSLs empower domain experts to directly

contribute to the development process, thus mitigating the necessity for in-depth programming

expertise in Data Ops, Network Ops and AIOps.

Furthermore, SmartEdge low-code tools are not solely focused on the high-level application

design; they also strive to enhance the productivity of developers working at the lower layers of

the technology stack of Edge Intelligence, e.g. such as networking programming, Remote Direct

Memory Access (RDMA), and C++/python for ROS. By automating the time-consuming and

D5.2 SmartEdge GA 101092908

2

monotonous tasks traditionally performed manually, low-code toolchain aims to reduce the

potential for error and the overall burden on developers.

1.1 RELATION OF WP5 TO OTHER WPS
WP5 provides tools and solutions to perform smart swarm operations supported by semantic-

driven multimodal stream fusion components for edge devices, elastic edge-cloud Interplay and

smart adaptive coordination and optimization mechanisms for device-edge-cloud continuum.

WP5 depends to artifacts from WP4 for establishing network connection in declarative fashion

via P4 and employ the semantic-based data integration artifacts of WP3 to transform the data

from heterogenous sources, protocols and formats into standardized RDF formats driven by

SmartEdge Schema (A3.1).

The data transformation modules provide in artifacts A3.5 and A3.6 will be used to feed data in

RDF into SmartEdge Runtime A5.4.1. The artifact A5.4.1 also extends SmartEdge Schema of A3.1

to capture runtime context and inputs/outputs of multimodal stream data sources of artifact

A5.1.4. Similarly, the network telemetry streams provided by WP4 are also annotated by

vocabularies extended from SmartEdge Schema. Receipt models in A3.2 are the integration

points for wiring application specifications to network configuration of WP4 with execution

workflow deployed in SmartEdge runtime of WP5.

Figure 1-2. Dependencies of Artifacts of WP3, WP4, and WP5

Next, WP4 enables WP5 smart networking capabilities by providing a secure and reliable

networking solution which includes automatic discovery and dynamic swarm formation

operating at the network level.

The Swarm Orchestrator (A5.3.1) developed within WP5 and the Network Swarm Coordinator

(A4.2) developed within WP4 are two key artifacts that, following the requirements defined by

WP2 (see D2.2), guarantee that the smart swarm operations are effectively supported by

adequate configurations at the network level. For example, with reference to Figure 1-3, the

orchestrator by WP5 is in charge of considering the available set of skills of the available swarm

nodes and to form a swarm recipe. Then, the swarm coordinator by WP4 receives recipe

requirements in terms of the number of swarm nodes needed and their requested capabilities.

The coordinator then, operating at the network layer, performs a look up in the Address

Resolution Table and finds matching nodes that are currently available to join a swarm. The

network layer by WP4 then makes sure the connectivity is established properly, guaranteeing

D5.2 SmartEdge GA 101092908

3

secure networking and isolation. Additional details are reported in D4.2, which also includes

specific examples of interaction between WP4 and WP5 components as well as the detailed list

of WP2 requirements, particularly in the context of Swarm Management and Communication,

clarifying which ones are addressed by WP4 and WP5.

Figure 1-3. Interaction between Recipe (WP3), swarm orchestrator (WP5) and Network Swarm Coordinator (WP4)

for the formation of the swarm [D3.1]

1.2 ARTIFACTS FOR LOW-CODE PROGRAMMING TOOLS FOR EDGE INTELLIGENCE
ID Component Lead Section Description Status

A5.1 Low Code

Programming

BOSCH,

CEF

2 Multimodal

semantic Stream

Fusion

Currently being

implemented

A5.1.2.1 Low Code

Programming

BOSCH 2.2.1 Vision Scene

Understanding for

Traffic

First release, continue to

release 1.5 and 2.0

A5.1.1.1 Low Code

Programming

FhG 2.2.3 Media Stream

Processing

Currently being

implemented

A5.1.2.2, Manufacturing

scene

understanding

pipeline

DELL 2.2.2 Manufacturing

scene

understanding

artifact,

Currently being

implemented

A5.2.1 Hardware-

Accelerated Data

Processing

FRIB 3.2.2 Low-level

component taking

advantage of

hardware to

accelerate data

processing

Currently being

implemented

A5.2.2 Runtime

Optimizer

FRIB 3.2.3 Hardware-

accelerated

Currently being

implemented

D5.2 SmartEdge GA 101092908

4

component

optimizing complex

workloads

A5.3.1 Swarm Adaptive

Coordinator

TUB 4.2.1 To form a swarm

and coordinate its

nodes.

First release, continue to

release 1.5 and 2.0

A5.3.2 Swarm Dynamic

Orchestrator

TUB 4.2.2 To orchestrate the

tasks among swarm

members.

First release, continue to

release 1.5 and 2.0

A5.3.3 Swarm Optimizer TUB 4.2.3 To optimize the

performance and

resource

consumption of a

swarm.

Currently being

implemented

A5.4.1 SmartEdge

Runtime

TUB 5.2.1 Runtime to execute

low-code tool chain

First release, continue to

release 1.5 and 2.0

A5.4.3 SmartEdge

plugins

TUB 5.2.2 Plugins as sub

artifacts (A5.4.3.x)

to extend

capabilities of

Runtime A5.4.1

First release with first

versions of A5.4.3.1-4.

Other plugins and next

version to be released in

2.0

A5.4.4 Low-code IDE TUB 5.3.3 An IDE help to

lower the effort to

write code and

interact with the

SmartEdge tool

chains via GUIs and

interactive

workflow

Four sub-artifacts

(A5.4.4.1,

A5.4.4.2,A5.4.4.3,

A5.4.4.4) are included

in the first release, the

completed/advanced

versions will be included

in release 2.0

Table 1-1. The list of artifacts and their status for WP5

1.3 MAPPING KPIS TO ARTIFACTS
The following table presents the overview of the relation between artifacts and KPIs. Further

details are presented in D6.1.

ID Descriptions Related Artifacts

K4.1 Ability to free developers from specifying

capabilities of hardware and sensors at the

design phase of stream fusion pipelines with end-

to-end latency guarantee (e.g., 20-75% lower

latency to baselines [DTH+21, PET21]

A5.1.1, A5.4.4.3

A5.1.2.1, A5.1.2.2

D5.2 SmartEdge GA 101092908

5

K4.2 Ability to elastically scale 200-500% better than

the state of the art, e.g., [Cudre-Mauroux13,

Duc21, Schneider22].

A5.2.1

A5.2.2

K4.3 Can dynamically optimize resource to be 50%-

150% better in terms of computing resources and

bandwidths;

Swarm Optimizer (A5.3.3),

Adaptive Coordinator (A5.3.1),

Dynamic Orchestrator (A5.3.2)

K4.4 Lower the effort in building swarm intelligence

with the target of reducing the coding effort in

comparison to imperative programming

paradigms by 80-90%, e.g., Python or C++, with

SMARTEDGE low-code tool chain.

SmartEdge Runtime (A5.4.1)

SmartEdge Plugins (A5.4.3):

 - P4 plugin (A5.4.3.1),

 - In-Network ML (A5.4.3.2)

 - Security (A5.4.3.3)

 - Mendix PlugIn (A5.4.3.4)

 - Chunk&Rule (A5.4.3.5)

Low-code IDE (A5.4.4):

 - Model Builder (A5.4.4.1)

 - Metric Report & Visualization

(A5.4.4.2)

 - Remote Rendering (A5.4.4.3)

 - Ego-vehicle Visualization

(A5.4.4.4)

 - Swarm Visualization

(A5.4.4.5)

K4.5 Support AI operations and coordination on a

large number of heterogeneous IoT devices (20-

50 types of 200-1000 devices) and smart systems

(5-10 application domains) to achieve a higher

resilience in terms of being able to integrate new

sensors and participant nodes at runtime without

interrupting the current application logic

Integrated systems that pack

SmartEdge Runtime (A5.4.1) in

performance related several

artifacts, e.g Federator (A5.3.2),

Coordinator, Network (A5.3.1)

and elastic scale artifacts

(A5.2.1, A5.3.3)

Table 1-3. Mapping KPIs to Artifacts

D5.2 SmartEdge GA 101092908

6

2 SEMANTIC-DRIVEN MULTIMODAL STREAM FUSION FOR EDGE

DEVICES

2.1 MAIN COMPONENTS AND FUNCTIONALITIES
In the task T5.1, we create components to integrate multimodal stream data and make it usable

for various applications. We will briefly revisit the design of T5.1 for multimodal semantic stream

fusion within SmartEdge. Figure 2-1 provides an overview of the initial implementation of this

pipeline. As detailed in Deliverable D5.1, this pipeline processes media data, such as camera

frames, alongside sensor data, producing a semantic description of these inputs for a range of

downstream tasks across different applications.

Figure 2-1. Overview of the semantic multimodal stream fusion pipeline.

The Media Stream Processing Component (Section 2.2.3) includes the software necessary to

format media streams from devices like 2D cameras and LiDAR cameras on cars or robots for

use in data fusion and other applications. The Sensor Fusion Component (Section 2.2.2)

aggregates sensor data to calculate traffic indicators and perform prediction tasks. The Vision

Scene Understanding (Section 2.2.1) aims to identify objects, their relationships, and

environmental details in a scene. It includes sub-components for traffic scene understanding

and manufacturing scene understanding. Finally, the Data Stream Fusion (Section 2.2.4)

integrates all information, adding semantic descriptions using a unified ontology/schema and

semantic web standards like RDF(S) and provides the results/information to the use cases.

2.2 COMPONENTS IMPLEMENTATIONS

2.2.1 Vision Scene Understanding
This component consists of two sub-components Visual Traffic Scene Understanding and

Manufacturing Scene Understanding as described in the next sub-sections.

2.2.1.1 Visual Traffic Scene Understanding

2.2.1.1.1 Main Functionalities
In this section, we detail the first implementation of the module “Visual Scene Understanding”

in the architecture outlined in Figure 2-1. Overview of the semantic multimodal stream fusion

pipeline., which is also documented in the deliverable D5.1.

D5.2 SmartEdge GA 101092908

7

This module takes video frame from camera as input and provides the corresponding scene

graph as output. Each element in a video frame is represented as a node in the scene graph and

a scene graph is a directed graph constituted by a set of triples of the form (Subject,

Predicate/Relation, Object), which describes how the "object node" is related to the "subject

node". With that design and functionalities, there are two main components in the module as

shown in Figure 2-2, the Object & Motion Detection and Visual Relationship Estimation

components.

Figure 2-2. The overview of scene graph generation.

The pipeline takes an image as an input and generates a visually grounded scene graph.

Given a video frame, the goal of the system is to generate a directed graph that strictly reflects

the semantic relationship between objects within the scene. Using an off-the-shelf object

detector, the system first extracts explicit features for objects, specifically their visual features,

bounding boxes, and labels. Then, the motion detector detects vehicle movement, providing

additional data to enhance the accuracy of subsequent stages. Finally, relation classifiers are

used to predict the relationships between each pair of objects, and the scene graph is generated.

2.2.1.1.2 Component Implementations
Object Detection

In this work, we employ YOLOv9 [Wang24], which is an improved architecture and training

technique that enhances detection performance, especially in real-time applications. It features

more efficient network layers, optimized anchor boxes, and refined loss functions, which

together contribute to superior accuracy in detecting and localizing objects in images. The

balance of computational efficiency and high precision makes it particularly suitable for

deployment on edge devices and in scenarios requiring rapid processing and decision-making.

Our objective is to create a comprehensive scene graph by detecting all potential objects within

the image, grouping them into pairs, and utilizing the features of their combined area as the

fundamental representation for relation estimation.

From the objects that were detected by the object detector, we construct the explicit features

for the relationship of each pair of objects in three aspects: visual, spatial, and semantic. Visual

features are the CNN features of the two objects. Spatial features are the bounding boxes and

coordinates of the two objects which encode their spatial layouts.

Visual Relation Prediction

Many existing approaches for visual relation prediction are slow and resource-intensive, making

them impractical for use on edge devices. To address this, we propose a traditional method that

D5.2 SmartEdge GA 101092908

8

relies solely on arithmetic operations, which are computationally efficient. Our approach begins

with estimating the projection matrix from the camera input. Using this matrix, we project the

bounding box of all objects into a new space as if they are viewed from above. This top-down

projection simplifies the spatial relationships and allows us to calculate angles and distances

between objects in the scene more accurately. By reducing computational complexity, our

method offers a viable solution for real-time applications on resource-constrained devices.

Motion Detection. For each frame, along with object detection, we also track the motion of each

object by mapping it across two consecutive frames, as visualized in Figure 2-3. We maintain a

buffer of the N most recent frames and calculate the motion vector for each pair of consecutive

frames. These motion vectors are then averaged to obtain the final motion vector for each

object. We match objects between frames based on similarity of feature vectors of bounding

boxes. It could happen that vehicles change from frame to frame but we can mitigate that by

shortening the time between frames. This method ensures a more accurate and stable

estimation of object motion by smoothing out short-term fluctuations and providing a clearer

understanding of movement patterns over time.

Figure 2-3. Motion detection using bounding boxes matching between frames.

Visual Relationship Estimation. Consider a pair of objects in a scene: we define eight possible

directions based on the angle between the two objects. Additionally, we categorize the

distances between these objects into five distinct types of ranges. To further classify their

interaction, we determine the motion type based on the moving direction of the two objects. If

the angle between them is between 0 and 20 degrees, the motion is classified as flank.

Conversely, if the angle falls between 160 and 200 degrees, it is classified as approach. This

systematic approach allows for precise characterization of spatial and motion relationships

between objects in the scene. Figure 2-4 visualizes our definition of angles and distances, as well

as the relative position between two objects.

Figure 2-4. Predefinition of object angles, distances and relative positions between two objects.

D5.2 SmartEdge GA 101092908

9

2.2.1.1.3 Component Usage
The Scene Understanding in Traffic module plays a crucial role by analyzing traffic scenes and

producing a detailed scene graph represented as a set of triplets. Each triplet captures key

relationships between objects in the traffic environment. This scene graph is then passed to

other components to perform various tasks, including ADAS test case generation and virtual

environment creation.

Usage in Use Case 1: The output is a scene graph comprising triplets that represent the

relationships between traffic objects (e.g., cars, pedestrians, traffic lights, etc.). Other

components can process these triplets to automatically generate test cases for Advanced Driver

Assistance Systems (ADAS). The test cases are derived from real-world traffic scenarios by

interpreting the relationships defined in the scene graph, such as (Car A, is approaching,

Pedestrian B). From this triplet, this component could create a test case to assess how ADAS

reacts to a pedestrian crossing the street in front of a moving car.

Dependency: The quality and complexity of the test cases generated are directly influenced by

the richness of the scene graph produced by the module Scene Understanding. If the scene

graph captures subtle traffic dynamics, the ADAS test cases will reflect real-world complexities

more accurately.

How to use the component

1. Input Specifications

The component accepts the following types of input:

• Image Files: Single image files representing a snapshot of the traffic scene.

• Video Files: A video file containing multiple frames of a traffic scene.

• Stream Data: Continuous real-time image or video stream from a camera or sensor.

Supported Formats:

• Images: .jpg, .png, .bmp

• Videos: .mp4, .avi

• Stream: Real-Time Streaming Protocol (RTSP)

2. Running the component

Option 1: Using Single Image or Video File

i. Prepare the input file: Make sure that the input file is saved in one of the supported

formats and is accessible to the component.

ii. Run the component with the following command:
python start.py --input_file <path_to_image_or_video>

Example:
python start.py --input_file traffic_scene_01.jpg
This will process the image traffic_scene_01.jpg and generate the corresponding

scene graph in the form of triplets.

Option 2: Using Stream Data

i. Connect to a stream: Ensure the stream source (e.g., a camera feed or network

stream) is active and accessible.

ii. Run the component with the stream URL or feed:
python start.py --stream_url <stream_url>

Example:
python start.py --stream_url rtsp://192.168.1.100:554/stream

D5.2 SmartEdge GA 101092908

10

This will continuously process frames from the stream and generate triplets for

each detected relationship in the traffic scene.

3. Output Specifications

The output will be a scene graph represented as a list of triplets in the format:

<object_1, spatial_relationship, object_2>

Each triplet describes the relationship between two objects (vehicles, pedestrians, etc.) in the

traffic scene, along with their relative positions and distances.

Example of Output:

<car_2, north_west 2m flank, car_1>

<car_3, east 4.5m, car_2>

...

By following these instructions, users can process traffic scenes and generate scene graphs to

support further tasks like ADAS test case generation and virtual environment creation.

2.2.1.1.4 Experiment and Demonstration

Experimental setup w/wo Baselines

Object Detection. We use a checkpoint YOLOv9c pretrained on Microsoft COCO dataset

specifically for the object detection task. The model is fast and lightweight while maintaining

sufficient accuracy, striking a balance between speed and precision.

Motion Detection. We retain the N most recent video frames for motion detection, with N

adjustable based on practical use cases. By default, N is set to 5. Currently, we heuristically

estimate the projection matrix for each camera. Since our cameras are fixed, this estimation

requires minimal effort. Moving forward, we plan to collect camera intrinsic parameters for

more precise calculations.

D5.2 SmartEdge GA 101092908

11

Figure 2-5. A fragment of the source code from the current implementation

Experimental results

Our initial results are shown in Figure 2-6, where we focus on two cars for easier visualization.

We can detect most objects and their relationships, describing each relationship by the angle

and distance between objects. The system runs at an average frame rate of 5.8 fps, with the

main delay caused by the object detector. Additional optimization techniques are essential to

reduce latency and enhance the overall responsiveness of the system.

Figure 2-6. Visualization of initial results. For clarity, scene graphs are shown only for two cars within an 8-meter

radius. Here for each relation, we show the angle and distance between the two objects.

D5.2 SmartEdge GA 101092908

12

2.2.1.2 Manufacturing Scene Understanding
The manufacturing scene understanding artifact, A5.1.2.2, along with artifact A3.11, is part of a

solution that aims to enable Autonomous Mobile Robots (AMRs) and other smart devices to

identify objects in the manufacturing setting, comprehend surrounding objects in their

operational area, and handle dynamic partially observable non-deterministic environments

more effectively. The solution will be validated and demonstrated primarily in use case 3 –

mobile robots in smart factories. By exchanging their perception with other intelligent robots

and edge devices, they establish a shared understanding of their environment and collaborate

to achieve common goals. Sharing scene information enables them to model aspects they

cannot directly perceive through their own sensors, leading to enhanced efficiency and

adaptability in the manufacturing process.

With real-time scene understanding, AMRs can navigate, avoiding moving obstacles, and react

appropriately to different scenarios. For instance, they can notify staff about an unexpected

pallet and seek an alternate route, or stop and issue an alert if the obstacle is a person. While

most automated manufacturing environments rely on fixed positions for efficiency, this limits

flexibility. AMRs with scene understanding can adapt to variations, like product racks in different

locations, or people inadvertently moving items. Even with limited intelligence, this adaptability

allows them to handle some of the changes in their environment, improving overall smart

factory operation.

The manufacturing scene understanding artifact is similar to the traffic scene understanding

artifact, A2.1.2.1, in that their primary input sensor is an RGB camera generating video streams

and their output is a streaming scene understanding graph. However, there are significant

differences in the way they process the images and draw specific inferences. This is due in part

to the differences in the environments and the way objects move and interact within them.

Traffic scenes are typically:

• outdoors

• varying lighting conditions, e.g., day/night

• varying atmospheric conditions, e.g., rain

• objects tend to follow predictable motion paths, e.g., cars do not move sideways

• objects tend to maintain their distance

• relatively limited number of object classifications

• object occlusions do occur but are typically transient, e.g., a car may temporarily be

hidden behind a lorry

• the ground surface is uneven

Manufacturing scenes are typically:

• indoors

• constant lighting conditions

• limited atmospheric conditions, e.g., occasionally smoke or steam

• objects can move at unpredictable speeds and directions, e.g., Mecanum wheels enable

an autonomous mobile robot (AMR) to crab sideways, as well as forward and backwards

• objects often come very close to each other or appear to merge

• relatively large and diverse number of objects, e.g., many different types of robot

• object occlusions occur often and may be long lived, e.g., a mobile rack may remain

hidden behind a large piece of equipment for some time

D5.2 SmartEdge GA 101092908

13

• the floor surface is usually flat

These differences mean that different assumptions can be made about the environment and

objects within it and require different approaches to address scene understanding.

2.2.1.2.1 Main Functionalities
The artifact consists of several parts:

• Combined RGB camera and depth sensor

• Location and calibration squares

• Media stream processing

• One or more sensor processing pipelines

• Semantic scene graph fusion

Figure 2-7. Manufacturing scene graph schematic.

Figure 2-7 illustrates the concept of the scene understanding pipelines.

D5.2 SmartEdge GA 101092908

14

Figure 2-8. Illustration of rack moving between operational areas (left) and a 2D occupancy map (right)

Figure 2-8 illustrates how the streaming scene understanding graph can be used in the smart

factory use case 3. The cameras are directly connected to IoT gateways, which host the software

that streams the scene understanding graph built from the camera image and depth sensor

feeds. The camera and IoT gateway can be considered a single entity and implemented as a

SmartEdge smart-node that can be part of a swarm. Scene understanding graphs are streamed

from multiple static cameras (smart-nodes) overlooking the operational areas. Each operational

area will be overlooked by several cameras providing scene understanding graphs from different

viewpoints, which helps the identification of objects that may be occluded from other views. All

the nodes in the swarm are linked over a wireless network implemented using special wireless

access points that support SmartEdge swarms, and are being developed as part of task T4.1,

artifacts A4.1-6. As the nodes are part of the same swarm, they can exchange application

information over the Zenoh Message-Oriented Middleware (MOM) implemented by artifact

A3.2. The camera smart-node publishes the scene understanding graph on a specific topic, which

can be subscribed to by other nodes in the swarm; the graph consists of RDF triples. The smart-

node information, topic path, and camera field of view are all stored in the Thing Description

Directory (TDD), which is implemented by artifact A3.3. By querying the TDD any smart-node

can identify the static cameras that overlook operational areas they are interested in and

subscribe to the topic feed. In the smart factory use case a smart-node, with sufficient

computational capacity, hosts an application the takes multiple scene understanding feeds and

fuses them into a single semantic 3D model of the operational area. The semantic 3D model has

many possible uses, one is to generate a 2D occupancy map as illustrated on the right in Figure

2-8, which gives a plan view of the operational area and the objects within it. The 2D occupancy

map is also published on a topic, and can be used by any smart-node to navigate the operational

area, even if it is not fully observable by its own onboard sensors. The navigation is performed

by NAV2, which is a standard ROS2 package for mobile robots. The above functionality is

implemented in artifact A3.11.

D5.2 SmartEdge GA 101092908

15

2.2.1.2.2 Component Implementations
Combined RGB camera and depth sensor

Figure 2-9. MEMS LiDAR cameras (left) and stereoscopic depth cameras (right)

The static cameras are positioned at fixed locations with a high vantage point, typically, they are

mounted on the ceiling or high up on structural frameworks. In addition to the static cameras,

it is also possible to use cameras mounted on AMRs, but this is more computationally intensive

as the camera must recalibrate its ego position each time the AMR moves. So, for initial

experiments only static cameras are used. The cameras are a combination of RGB camera and

depth sensor, which has the advantage that they have a common frame of reference. Two types

of camera technology are being evaluated, the Intel L515 MEMS LiDAR camera and Intel D455

stereoscopic depth camera, as illustrated in Figure 2-9. Both types of sensor provide RGB images

and depth maps (range to a target) in a single sensor. The LiDAR uses a scanning laser to detect

range, whereas the stereoscopic camera uses stereo photogrammetry to triangulate key

features in the image. Both cameras have approximately the same range of about 6-9m.

Obtaining RGB and depth information from the same sensor ensures that the two data streams

have the same frame rate and field of view, although they do have different resolutions. The

cameras are connected to a Dell Technologies 5200 IoT gateway via a USB cable. The gateway

hosts the scene understanding pipelines, as well as other software components of the artifact.

Location and calibration squares

Figure 2-10. Rack with QU identification code and floor mounted QR code and calibration squares

Object detection and classification in manufacturing can be problematic, especially when

identifying specific items like individual AMRs. To simplify this, QR codes will be attached to

certain pieces of equipment, as illustrated in Figure 2-10. These unique codes, linked to object

properties in the Thing Description Directory (TDD), enable easy identification when captured

by cameras, enriching the scene's semantic understanding. Furthermore, QR codes and

calibration squares at known locations will aid camera calibration and object positioning. A static

D5.2 SmartEdge GA 101092908

16

camera will always see at least one of these floor or wall mounted codes. Like other objects,

these codes are also stored as "things" in the TDD. This technique enhances object recognition

by identifying individual objects and provides a common frame of reference for objects across

the operational areas.

As part of an initial calibration technique, the static QR codes and calibration squares on the

floor and walls are used to calculate the projection matrix for the camera’s field of view. As the

QR codes and calibration squares are modelled as Things in the TDD, their location and

orientation can be retrieved. It is therefore possible to calculate the transformation matrix that

map the camera’s image plane onto the absolute coordinates of the factory floor. This allows all

objects to be placed in the same coordinate system.

Media Stream processing

The RGB depth sensor feed is split into different parts by the media stream processing unit and

supplied as input to each of the processing pipelines. Which sensor information feed is input to

which pipeline depends on the type of processing being performed, e.g., for the foreground

object detection only the depth information is required. In order for the output scene graphs

from each pipeline to be semantically fused, it is critical that all pipelines process the same frame

at the same time and that they share the same field of view. The resolution of the RGB and depth

information is different, but this is normalised before passing the sensor feeds to the processing

pipelines.

One or more sensor processing pipelines

Currently, three sensor pipelines are planned: foreground object detection, object classification,

and identifying mark detection. The output of each processing pipeline is merged in the data

stream fusion unit. As all objects in the scene share the same frame of reference, their enclosing

bounding boxes can be correlated using Intersection over Union (IoU) [Rezatofighi19]. In the

future additional sensor pipelines may be added either to support new processing techniques

or new types of sensor feeds. For example, thermal cameras may be used to pick up heat

signatures, which is useful for detecting humans as most of the manufacturing plant is colder;

or using Large Language Models (LLMs) to describe the objects in a scene by directly producing

a scene understanding graph. Whilst LLMs can be prone to hallucinations, scene graphs from

other processing pipelines could be used to substantiate their predictions.

The foreground object detection pipeline uses depth information from the camera to separate

foreground objects from the background scene. There are various techniques for performing

foreground object detection, but in the manufacturing setting we can take advantage of the fact

that the floor is level and uniformly flat. As part of a calibration step, a baseline floor value is

calculated for each cell in the depth map. There are existing techniques to detect plains in a

depth map, even if it contains static foreground objects. The plain representing the floor can

then be extrapolated for each cell in the depth map and is stored as a constant for future

processing. Detecting foreground objects in the scene is a simple arithmetic operation of

subtracting the extrapolated floor depth from the current depth for each cell in the current

frame. This technique will detect static objects, such as support columns, as well as moving

objects, such as the mobile racks. The static objects are not regarded as part of the background,

even if they are fixed to the floor. Instead, they are modelled as discrete objects in the 3D

environment with their own unique Thing Description in the TDD and help to provide fixed

landmarks at known locations. The output of the pipeline is a scene understanding graph of the

detected foreground objects in the sensor’s view at a specific point in time. Each object is given

D5.2 SmartEdge GA 101092908

17

a unique identifier, and its position is enclosed by a bounding box, which is defined by its location

in the depth map.

The object classification pipeline uses YOLO9 [Wang24] and a fine-tuned COCO dataset, to

detect objects in the scene. YOLO is a powerful object detection model capable of detecting

multiple objects at different distances. The COCO dataset is commonly paired with YOLO, and

can classify 91 objects, from cars and busses to laptops and mobile phones. Unfortunately, there

are almost no datasets for pieces of common manufacturing equipment, and they are typically

proprietary and not publicly available. We therefore intend to start from the COCO dataset, as

it contains some items we need to identify, and add additional training data for the missing

objects. The training data will be a mixture of real and synthetic images. Ideally, we will use the

Model Builder (A5.4.4.1) being developed by TUB to fine tune the YOLO/COCO model to

recognize the manufacturing equipment. Below is a list of manufacturing equipment that will be

added to the COCO dataset:

Autonomous mobile robot Smart mobile rack Conveyer belt

Person Computer server Table

Chair Caster chair Box

Laptop Monitor Cup

QR codes Calibration square Floor

Robot Tray Tray trolley

Pillar Disk drive Pallet

Computer servers are the products being moved around the factory. Trays hold products when

they are being moved on conveyer belts. The products are lifted off the trays when they are put

into the mobile racks, and the trays are stacked onto the tray trolley. Pillars are support

structures for the roof, and are static objects with identifying marks, which are useful landmarks

when navigating the operational areas. If an object can be detected, but cannot be classified

with sufficient certainty, it is given the classification “Unknown”. The images are also used to

generate CAD models of the various pieces of equipment, which are then converted into URDF

models that can be rendered in Gazebo. The Gazebo renderings are captured and used as

synthetic images for fine tuning the YOLO/COCO object detection model. The CAD and URDF

models are also used in 2.5D Visualization in artifact A5.4.4.5 and 3D environment construction

in artifact A3.11.

The previous pipelines are effective at detecting objects and classifying them, but they are often

unable to discriminate two different instances of the same object, an occurrence that is common

with factory equipment. To improve the detection of individual instances of objects we will use

a processing pipeline to recognize identifying mark detection. In our implementation we will use

QR codes attached to certain pieces of factory equipment such as AMRs and mobile racks. The

processing pipeline will take an RGB image feed as input, use a common QR code detector such

as pyzbar or QReader, and output bounding boxes with the decoded QR codes.

Semantic scene graph fusion

D5.2 SmartEdge GA 101092908

18

Figure 2-11. Semantic scene graph

It is important that scene understanding graphs maintain the continuity of object IDs between

successive frames. Objects that are temporarily occluded by other objects should, for a period

of time, be maintained in the scene understanding graph for the current frame as a priori

knowledge of an object. Ideally, when the object reappears, they should be reassociated with

their previous ID. The semantic scene graph fusion component does this by using DeepSORT

[Wojke17] to predict the position of scene objects in future frames. The DeepSORT concept will

be modified to generate a predicted scene graph for the next future frame, Gt+1. Once the new

frame is captured by the sensor at t+1, each sensor processing pipeline is applied to the scene

frame Gt+1 to correct the predicted positions of the objects based on the confidence score from

each pipeline and the weight given to each pipeline.

The graph can also be enhanced with Thing properties from the Thing Description Directory

(TDD). In SmartEdge, Things are defined as swarm nodes, independent agents, or objects within

the use case environment, with their properties, actions, and events stored in the TDD. For

instance, a robot's weight and its ability to move are examples of such properties. These TDD

properties enrich semantic graphs, offering additional context for detected objects. Additionally,

sub-images from bounding boxes could be linked to the semantic stream and transmitted

alongside it. These sub-images, which use less bandwidth, could be valuable for subsequent

processing, as discussed in [Bowden22].

D5.2 SmartEdge GA 101092908

19

2.2.2 Integrate Multi-modal Sensor Data Sources

2.2.2.1 Main Functionalities
This task corresponds to Artifact A5.1.3 and it is performed in collaboration with other partners.

UC2 aims at smart traffic management of road junctions and option zones, thus requires real-

time data from various sensing sources to construct a digital representation of the traffic scene.

Because of the weaknesses of each sensor type, it is important to employ sensor fusion to

improve the quality of the scene understanding. Advantages and disadvantages of each sensor

type are considered when comparing and combining data of these sensing sources captured

from the same traffic scene.

As an example, let us consider combining radar and camera sources to detect moving road-user

objects. Radars are good in detection movement and can work much better than cameras in bad

weather conditions like rain and snow. However, it has weakness in detecting smaller objects,

namely pedestrians and bicycles, while monitoring these road users is important for smart traffic

control. The doppler-based radar is not good in separating objects that are moving slowly or are

in stand-still (like vehicles in a queue). Radar can also miss some vehicles or generate ghost

vehicles which do not exist. Camera on the other hand has the advantage of detecting all moving

object types including pedestrians and bicycles, while it may suffer from image clarity in bad

weather conditions.

To sum this up, we need to achieve a more reliable and holistic understanding of the traffic scene

by combining data from various sensing sources such as traffic radars, cameras, loop detectors,

and signal states (traffic lights). Next, we derive traffic indicators from the above scene

understanding and give them as inputs to the traffic signal control nodes. These traffic indicators

involve momentum, pressure and option-zone vehicles. The momentum is the number of

vehicles and their speed approaching a green signal aiming to extend the green time. The

pressure is the number of queuing vehicles behind conflicting red traffic signals aiming to stop

the ongoing green to get green themselves. The number of vehicles at the option-zone is

monitored when the green signal is about to end. The less vehicles at the option-zone, the safer

green termination.

2.2.2.2 Component Implementations

The technical implementation of this task comprises the following components: a) Sensing

Pipelines, b) Sensor Data Fusion (Artifact A5.1.3), and c) Nodes communication with NATS-MQTT

interface.

a) Sensing Pipelines:

The sensing pipeline is responsible for processing data from various sensing sources including

radars, cameras, loop detectors, and traffic signals.

Radar sensor processing pipeline:

Radar object detection and its swarm networking interface has been implemented, deployed

and successfully tested in the field. The pipeline uses proprietary traffic radars with built-in

object detection capability together with customized Jetson Nano edge units that we have

D5.2 SmartEdge GA 101092908

20

deployed and connected to the radars. These radars are installed at junctions in the pilot area

in Helsinki, where one radar faces each road-segment. Each edge device receives the detected

objects from the radar serial port in binary format in real-time, converts them into JSON string,

and publishes them to specific topics per junction. Data Fusion nodes subscribe to the topics and

use this data

Camera sensor processing pipeline:

Similar to radar installations, we have installed cameras (each connected to one of our edge

devices) in junctions so that one camera faces each road-segment. For this pipeline, the video-

based object detection will be performed by other SmartEdge artifacts like A5.1.2.1 (Vision

Scene Understanding for Traffic). This is being implemented using deep learning and GPU

acceleration to detect and classify moving objects in real-time.

As a prerequisite for camera detection, the geometries of the relevant sections on the road

together with option zone boundaries are specified as an input to the camera object detection

pipeline. In addition, we have implemented video streaming to share the real-time camera video

frames with the nodes that perform image-based object detection. This video stream sharing

feature is implemented using RTSP and via MediaMTX media server and is currently under test.

Later, video sharing can be performed using the A5.1.1 (Media Stream Processing) artifact.

Loop detector processing pipeline:

This sub-component has been implemented and is being tested in the field. Vehicle detectors

such as inductive loops are directly connected to controller devices at each junction. The

detections they provide can be used as part of the sensor fusion. The edge unit connected to

each controller parses the raw data from loop detectors and converts them into occupancy

statuses as well as vehicle counts, serialized as JSON, before publishing to the network to be

used by Data Fusion nodes in real-time (with specific MQTT/NATS subjects).

Traffic signal data processing:

Signals i.e. traffic lights installed at each junction, are all connected to a controller. The statuses

of these signals (e.g. red, green, amber) can be fetched from the controllers via the edge unit

and relayed to the backend services in a similar manner to the loop detector data described

above.

b) Sensor Data Fusion (Artifact A5.1.3):

Object detection streams from the above sensing sources are given as input to the data fusion

pipeline. It is important to note that each individual road-user object might be detected by

multiple sensing sources at the same time, therefore the fusion algorithm should consider this

phenomenon. The format and the nature of the data can also be different depending on the

sensing source. As seen in Figure 2-12, data fusion employs detectors, radars, and signal data.

AI processed camera data provides similar object lists as radar. This data is not yet available (the

grey box)

D5.2 SmartEdge GA 101092908

21

Figure 2-12. Tentative approach for the sensor fusion

The vehicle detectors (usually inductive loops) send binary occupancy data, which indicates if

the given location of the loop sensor is partly or fully occupied by a vehicle. The detector data

depends on the configuration, location and type of detectors used in each intersection.

Generally speaking, an upstream detector (e.g. at 40m from the stop line) can be used to count

the incoming vehicles. Downstream detectors located exactly at the stop line can be used to

count vehicles leaving the intersection. This approach allows rough estimation of the number of

vehicles between the detectors, but it is prone to cumulative error. However, loop detectors

may provide only limited details about individual vehicles.

The radar on the other hand, provides detailed object lists with object type, location and speed.

However, there are certain limitations related to noise, range, speed and occlusion. For sensor

fusion, loop detector data can be used to filter the radar data for anomalies such as “ghost

vehicles”, “random spawns”, and “twin detections”. It should be noted that since a detector

covers only certain locations, the radar data can be filtered only at that location.

We plan to extend the sensor fusion capabilities with the camera stream. Once the AI-based

object detection from camera data becomes available, a more advanced solution will be

implemented. From the camera stream we will be getting a list of road users with attributes

such as type, position, lane, direction and speed. Camera is also the only data source for

pedestrians, cyclists and micro-mobility.

The state of traffic light signal is an input that indicates if the traffic stream is moving or not.

When the traffic signal is red and vehicles are not moving, the radar data is not reliable, and we

should rely more on loop detectors and on camera data. If the camera can detect an object list

from a standstill queue, that will be used. Alternatively, the queue length could be detected

directly from the camera data and computed into vehicle counts. When the traffic signal is green

and vehicles are moving, then the radar data becomes more reliable. In addition, the camera

data is used to filter out anomalies. When the traffic signal is changing (from green to yellow)

then we aim to obtain the number of vehicles at the option-zone.

After the filtering is done, all data is merged into a database. The latest messages from various

sources are used, so at the moment the timestamps are not used for synchronization. Traffic

state estimation process sends queries to this database and estimates the traffic state by using

queuing theory and traffic flow theory. Dynamic knowledge graphs (DKG) could also be used if

available. The traffic state for the signal controller is provided by traffic indicators as indicated

before in Figure 2-12.

D5.2 SmartEdge GA 101092908

22

Figure 2-13 and Figure 2-14 illustrate a demo of the initial implementation of data fusion (artifact

A5.1.3). The shown terminals present one of the data fusion nodes responsible for one specific

junction (“fi.helsinki.270”) of the pilot corridor in Helsinki. As explained before, the data fusion

node subscribes to the subjects (topics) relevant to the desired junction’s local swarm, where

various sensing nodes (e.g. loop detectors, radars, signal status) are constantly publishing the

data of the moving objects as well as the traffic light statuses. Figure 2-13. Loop data of several

lanes received by a Data Fusion node (at junction fi.helsinki.270). presents the loop detectors

pipeline of this junction, where each row represents the cumulative number of vehicles that

have passed through each lane's upstream and downstream detectors. Figure 2-14. Output of

loop-radar-signal fusion for one road lane, performed by a Data Fusion node (at junction

fi.helsinki.270). shows the result of fusing the signal, loop, and radar data for one of the lanes

(no. 3). Queue lengths, density, and flow are derived from the loop detector data while also

considering the traffic signal status (whether light is red or green). The queue length is

determined by the difference between downstream and upstream cumulative vehicle counts.

Density refers to the number of vehicles in a specific area, expressed in vehicles per kilometer,

while flow measures the number of vehicles passing a fixed point within a given time frame.

Density and flow are essential indicators that help determine whether a road is congested. Next

in this figure, you can see the resulting filtered list of queued and approaching vehicles as

detected by the radar. To leverage sensor fusion, any inaccuracies in the radar object detection

are being filtered by referring to the loop data.

Figure 2-13. Loop data of several lanes received by a Data Fusion node (at junction fi.helsinki.270).

Figure 2-14. Output of loop-radar-signal fusion for one road lane, performed by a Data Fusion node (at junction

fi.helsinki.270).

D5.2 SmartEdge GA 101092908

23

c) Nodes Communication with NATS-MQTT interface:

The role of this component is to enable communication between various sensing nodes and the

data fusion nodes as well as possibly with other artifacts. NATS-message broker acts as a

middleware component in Conveqs sensor data collection system. In SmartEdge, however, a

more widely used MQTT-protocol is preferred. Because of this, we need a mechanism for

relaying NATS messages between Conveqs platform and components implemented in

SmartEdge. While NATS documentation states that it should be capable of handling MQTT

messages, this functionality is relatively new and was not tested by us. As part of A5.1.3, we

have now implemented and tested this approach in the field on a NATS server, as illustrated in

Figure 2-15. NATS MQTT interface: Integration of heterogeneous publish/subscribe messaging .

Results show that having the NATS server configured properly, the connection, publish and

subscribe work both ways successfully between nodes no matter whether they use MQTT or

NATS.

Figure 2-15. NATS MQTT interface: Integration of heterogeneous publish/subscribe messaging technologies.

The following steps should be followed to enable a NATS server to fully support MQTT.

Customized NATS config file (“nats.conf”) to support MQTT:

D5.2 SmartEdge GA 101092908

24

MQTT to NATS topic conversion between heterogeneous nodes:

It should be noted that MQTT-enabled nodes should pass “/” in topic names, while NATS-

enabled nodes pass “.” for the same topic names. The server does the conversion between the

two formats automatically. Examples shown below.

MQTT: “radar/*/*/objects_port/json”

NATS: “radar.*.*.objects_port.json”

2.2.2.3 Integration
Integration with UC2:

The following figure shows how A5.1.3 and other functionalities are integrated within the

context of smart traffic use-case (UC2). The overall data flow is depicted in the following figure.

The processing is performed in different phases starting with fusion of real-time object detection

from various sensing sources (dynamic data), where artifact A5.1.3 is responsible for this step.

The resulting fused data is then passed to the components that compute various traffic

indicators required for realization of traffic management in UC2. As shown in Figure 2-16, these

D5.2 SmartEdge GA 101092908

25

components also require static data such as the road-network semantic and geometrical

description.

Figure 2-16. Data flow of sensor fusion and traffic indicators for smart traffic management (Grey rectangle boxes

indicate a process while other boxes indicate input/output data)

Low-code Recipe-based Implementation:

SmartEdge also provides low-code artifacts that facilitate recipe-based use-cases development

as well as quick customization and configuration of the use-case logic. Thus, we have started

using these features for smart traffic, aiming at eventually implementing several functionalities

using semantic low-code approach. Here we explain an example of recipe development for

realization of camera-based object detection. As shown in Figure 2-17 below, the application

developer draws the areas subject to traffic management and presents them as polygons (array

of points) to be used as static input to the recipe for camera object detection.

D5.2 SmartEdge GA 101092908

26

Figure 2-17. Example of recipe configuration. Traffic areas subject to traffic management, given as static input (as

polygons) to the camera object detection recipe.

As examples show in Table 2-1 below, recipe requirements are defined in the form of required

input, primitive (required operations) and the expected output. Camera object detection

requires receiving real-time video frames as dynamic input, and through several steps, should

be able to generate real-time object detection output as detailed in the table. The output should

contain attributes such as object classification (passenger car, truck, tram, bicycle, pedestrian,

etc.), speed and road-lane. Furthermore, given that the traffic scene can be described as a

dynamic knowledge graph (DKG) in RDF format, it becomes possible to use graph queries with

SmartEdge’s low-code approach to automatically generate traffic indicators. The queries written

in SPARQL can be passed to the low-code artifacts to extract aggregations and some traffic

indicators from the DKG.

D5.2 SmartEdge GA 101092908

27

Table 2-1. Defining recipe requirements and the data flow

2.2.3 Media Stream Processing
As introduced in D5.1, the Media Stream Processing Pipeline includes the software components

required to make the media streams coming from capturing devices like 2D Cameras and LiDAR

Cameras from cars or robots or even from virtual environments of the remote rendering pipeline

to be available in the appropriate format for further components like Data Fusion or use case

specific requirements. Video codecs, video bit rates and transmission protocols are key aspects

in media streaming. These factors decide whether a media stream with a specific configuration

can be created or consumed by a specific provider (media stream source) or consumer (media

stream target). In the scope of SmartEdge, media refers to video and image data. For an

overview of these concepts please refer to D5.1.

2.2.3.1 Main Functionalities
The Media Stream Processing pipeline consists of a Video Encoder that receives raw video

streams from capturing camera devices. An optional Video Packager which is required if

Adaptive Bitrate Streaming (ABR) is used. Streaming Clients which are responsible for preparing

the video streams for transmission over the network. A Streaming Server as the component that

receives the media streams from source devices and makes the streams available to consumer

devices. And the Video Decoder/Image Extractor which are responsible for decoding image

frames from a video stream and provide them in an appropriate format to the next component

in the pipeline such as displaying on a monitor or editing the image or video. For a more detailed

overview of the components refer to D5.1. The Media Stream Processing Pipeline is provided in

Figure 2-18.

Figure 2-18. Media Stream Processing Pipeline

Video
Encoder

Video
Packager

Streaming
Client

Netw
ork

Streaming
Server

Video
Decoder

Image
Extractor

Media
Sources

Consumer
Apps

D5.2 SmartEdge GA 101092908

28

For hardware devices, the video encoders, packagers and streaming clients are usually

predefined and can be configured to a certain degree (e.g. street cameras in UC2). In the case

of software that acts as a streaming source, these components can be selected depending on

the intended use and runtime environment (e.g. UC1 Virtualization Environment).

2.2.3.2 Component Implementations
As Streaming Server for the SmartEdge Media Stream Processing Pipeline, the open source

server Simple Realtime Server (SRS (Simple Realtime Server) | SRS (ossrs.io)) is used as basis for

SmartEdge extensions. SRS provides a set of commonly used protocols and allows to translate

between them.

Figure 2-19. UC1 media streaming pipeline

Figure 2-19 shows an example for Use Case 1 where the virtualization environment is one of the

sources of a video stream that is encoded as H264 video which is currently provided through a

WebRTC Streaming Client to consumers. As mentioned, the first three components of the media

streaming pipeline depend on the used hardware and software of a specific use case. For the

next phase its planned to extend the client to also support more generic protocols like RTSP so

that the video stream can be consumed also by non-Web-based consumers.

For use case 1 the video that is created by the remote rendering artifact must be processed to

act as input for the components that are needed to implement the use case. Namely, the ADAS

(adaptive driver assistance system) and the scene understanding in traffic artifact. Both need

images as input rather than a complete video stream. To provide this functionality as a generic

feature the Streaming Server must be extended with additional playout mechanisms.

Figure 2-20 visualizes the extension for the generic media streaming pipeline and its interactions

using use case 1 as an example. Orange boxes belong to use case specific implementations. Blue

ones are provided by WP5 low code tool chains.

UC 1 Media Processing Pipeline

UC1 Virtualization

Environment
Video Encoder WebRTC Streaming

Client
raw

images
H264

https://ossrs.io/lts/en-us/

D5.2 SmartEdge GA 101092908

29

Figure 2-20. Streaming Server Extension and its interactions

The ‘opt. additional extensions’ box is a placeholder for further development and optional

integration with other use cases. In use case 3, for example, a specific colour space of the

incoming video relieves the calculation from the use case itself into the media stream processing

pipeline. This pre-processing can be integrated directly into the media processing pipeline,

which in turn allows the pre-processed video input to be delivered to multiple targets without

the targets having to take care of the required video pre-processing themselves.

2.2.3.3 Experiment and Demonstration
The Remote Rendering Artifact can be connected with the Media Stream Processing pipeline.

With this, multiple clients, currently as web applications with a WebRTC client, can be connected

to virtual cameras without bothering the Remote Rendering Artifact itself with too many video

streaming clients. Also the ADAS system which is used by use case 1 can receive images so that

it can in turn sent back vehicle control commands. Connecting the scene understanding

component is not yet done but targeted for the first months of 2025.

2.2.4 Semantic Data Stream Fusion and Declarative Mapping Rules
We attempt to adhere to FAIR principles as much as possible. We use URIs to identify resources,

including images and metadata. The generated data and metadata can be queried using

standardized languages like SPARQL and its streaming extension, discussed in the next section.

To ensure interoperability, we use as many ontological concepts from Wikidata as possible, each

with a unique identifier, and align them with the SmartEdge ontology developed in WP3. Figure

2-21 shows the concept in Wikidata and part of our internal ontology.

SRS

Image Provider

Extension

ADAS Client Scene

Understanding

Client

Streaming Source

ADAS Visual Scene

Understanding

Opt. additional

Extensions

D5.2 SmartEdge GA 101092908

30

Figure 2-21. The concept in Wikidata and a part of the internal ontology

The first release of the DataOps tool, developed by WP3 and described in deliverable D3.2,

provides a solution to configure pipelines for mediated data exchange across different data

representations. In the context of artifact A5.1, such a solution can be leveraged as described

in deliverable D5.1. In this deliverable, we report the developments performed to define

DataOps pipeline that could support the implementation of the Data Stream Fusion artifact

(A5.1.4) by leveraging Semantic Web technologies.

2.2.4.1.1 Main Functionalities
The following functionalities are designed and developed via dedicated DataOps pipelines:

• declarative transformation of the output generated by the Vision Scene Understanding

artifact (A5.1.2.*) to a common RDF output according to the target ontology;

• enrichment of the graph extracted from multimodal stream fusion with additional

information (e.g., contextual information) extracted from static data sources (e.g.,

datasets).

For the first release, a set of DataOps pipeline is defined to support such functionalities and

implemented as a demonstrator considering data sources for scene understanding from the

SmartEdge use case 2. We plan to finalise the integration with other artifacts and further refine

such pipelines as part of the second SmartEdge release.

2.2.4.1.2 Component implementations

The DataOps pipelines depicted in Figure 2-22 shows the composition and configuration of

DataOps components (A3.5) from WP3 to implement the semantic data stream fusion

functionality.

In the above part of the diagram, we show how the Vision Scene Understanding component

generates from the input data sources (e.g., Sensor, Camera and LIDAR) a stream in a custom

JSON format of the detected objects. At runtime, this stream is consumed using an appropriate

data connector, e.g., a WebSocket connector1. The stream is processed by a Mapping Executor

component that leverages declarative mapping rules to convert the content of the stream from

the JSON representation to an interoperable serialization in RDF according to a target ontology.

1 https://camel.apache.org/components/4.8.x/vertx-websocket-component.html

D5.2 SmartEdge GA 101092908

31

The advantage of using the DataOps tool for this transformation refers to the declarative nature

of the mapping rules defined that avoids hard-coded solutions, ensuring better maintainability.

Since the target data format is RDF, the mapping rules can be defined using both the RML

Mapper component and the Mapping Template Component provided by the DataOps tool2.

Both components support the RDF Mapping Language (RML)3 to specify the mapping rules as

documented in D3.2.

Figure 2-22: Overview of the DataOps pipelines for Semantic Data Stream fusion.

As a result of the transformation, an RDF stream containing an interoperable representation of

the detected objects is generated. Such stream is constantly enriched by leveraging the

Multicast Enterprise Integration Pattern4 enabling the parallel processing of static information

retrieved by additional data sources. As an example, if the scene considered is a street, we can

enrich the data with information on its topology. Alternatively, if the scene considered is an

industrial shop floor we may enrich the data with information about the robots currently

operating in that specific area. The diagram in Figure 2-22 represents an advanced use case in

which such information changes often or unpredictably and should be retrieved from an

external data source whenever needed. Simpler scenarios may support a once-in-a-while

transformation to RDF of the static information that can be directly accessed without requiring

an on-the-fly transformation to RDF. In the considered case, an HTTP connector5 is used to

access an external data source represented in a custom XML data format. The data are then

processed by a Mapping Executor that applies the mapping rules to generate an RDF

representation according to the same target ontology applied for the stream.

2 https://github.com/cefriel/chimera
3 https://w3id.org/rml
4 https://camel.apache.org/components/4.8.x/eips/multicast-eip.html
5 https://camel.apache.org/components/4.8.x/http-component.html

D5.2 SmartEdge GA 101092908

32

Finally, the graph-based nature of RDF is leveraged to merge the two graphs generated into one.

In the resulting graph, common node identifiers are automatically merged and shared semantics

are guaranteed by the underlying ontology. The resulting graph is then exposed by an

appropriate connector for further processing. For example, a stream processing or stream

reasoning engine can be leveraged to perform continuous querying operations for detecting

specifying conditions in the processed scene.

2.2.4.2 Experiment and Demonstration
For the first release, we implemented the designed DataOps pipelines in the context of

SmartEdge use case 2 as shown in Figure 2-23. Such pipelines demonstrate a process for

converting and fusing heterogeneous data sources according to a shared semantic

representation.

Figure 2-23: Demonstrator DataOps pipeline for the Helsinki use case. Static data and real-time data are converted

to an RDF representation and then merged for further possible processing

The pipeline ingests real-time data from radar systems in Helsinki, transmitted via WebSockets

in JSON format. Such data are represented using a custom data format and an example is

reported in Figure 2-24. This data includes details on the count and types of vehicles detected,

such as cars, trucks, and other classifications.

These data are complemented by processing static data on the specific sensor that is responsible

for a measurement in the live data. This second data source is obtained from invoking a REST

API. Both data sources are transformed into RDF according to a shared “RDF Smart Traffic

Ontology” to enable semantic interoperability and data fusion.

For the first release, a preliminary “RDF Smart Traffic Ontology” is identified according to the

best practice of ontology reuse. We identified and reused two existing ontologies: the ASAM

OpenXOntology6, which provides a model for road and vehicle-related data, and the SOSA7

(Sensor, Observation, Sample, and Actuator) ontology, which is designed for describing sensor-

generated data. These ontologies offer a standardized, meaningful representation of traffic and

sensor data, supporting more effective data integration. Additionally, as discussed in the

introduction of this sub-section, we referred relevant entities from Wikidata. Mapping rules are

6 https://www.asam.net/standards/asam-openxontology/
7 https://www.w3.org/TR/vocab-ssn/

D5.2 SmartEdge GA 101092908

33

specified through the Mapping Template Language (MTL) and executed using the Mapping

Template component.

As an example, let's examine one specific radar and one specific measurement from it, shown in

Figure 2-24. The semantic model identified for the target RDF output is illustrated in Figure 2-25.

The static information from the Helsinki radar is described as a "Sensor" according to the SOSA

ontology. This categorization is enhanced by referring to specific Wikidata entities: Q47528

identifying a Radar in Wikidata, and Q167676 for a Sensor. The radar's name and geographical

position are also included by reusing the Basic Geo (WGS84 lat/long) Vocabulary8.

Figure 2-24: Example measurement from one Helsinki radar. The position, length, speed and bearing of a vehicle are

measured. The class of the vehicle is also identified, in this case the '4' classification corresponds to a car.

In the SOSA ontology, a key class is "Observation," representing a measurement taken by a

specific Sensor. Each Observation is linked to the radar, allowing us to identify real-time

observations associated with that sensor. Each Observation also relates to an entity being

measured, representing specific properties of that entity. In this context, we use the ASAM

OpenXOntology to model vehicle characteristics such as length, speed, and angle.

A detected entity uniquely identified here as "se-data:59" is declared as a SOSA

featureOfInterest, meaning that it is being observed by the radar. Additionally, since the Helsinki

radars can identify vehicle types, this entity is defined as a Car class from the ASAM ontology

and Q1420 from Wikidata (Motor Car). Finally, the measured values for the car such as length,

speed, and angle are categorized by their respective measurement types in the ASAM ontology

and are defined as SOSA Results, meaning they are the resulting values from specific

Observations made by the radar.

8 https://www.w3.org/2003/01/geo/

D5.2 SmartEdge GA 101092908

34

Figure 2-25: An example of a complete mapping process: transforming JSON data from a single radar and one of its

observations into the final RDF representation.

The conversion of both JSON data sources to RDF is defined using an MTL mapping and

executed with the Chimera Mapping Template component. Figure 2-26 shows a snippet of this

MTL mapping, which demonstrates how real-time observations, such as those in the JSON file

in Figure 2-24, are converted to the output format shown in Figure 2-25. Firstly, the relevant

data is extracted from the JSON file into a Data Frame. Then, following the mapping-template

D5.2 SmartEdge GA 101092908

35

approach, the data is written to the RDF Turtle format. The approach and functioning of the

Mapping Template Component are explained in more detail in the deliverable D3.2.

Figure 2-26. Snippet of the MTL mapping performing the conversion for the DataOps pipeline shown in Figure 2-23.

In the portion shown, observations from the input json file are converted to RDF Turtle.

The interoperable and fused output of such pipeline can be exploited by configuring its

forwarding to an RDF stream processing component (e.g., to enable a continuous querying task).

Alternatively, an additional transformation to a target data format (e.g., JSON) can be defined

within the DataOps pipeline with specific mapping rules and the output can be forwarded to

another node within the swarm.

For the next release, we plan to improve the implemented pipeline, refine the semantic model

considering its integration with downstream components, enhance the integration with other

artifacts and evaluate its applicability for other SmartEdge use cases.

D5.2 SmartEdge GA 101092908

36

3 SWARM ELASTICITY VIA EDGE-CLOUD INTERPLAY

3.1 MAIN COMPONENTS AND FUNCTIONALITIES
As previously described in D5.1, Task T5.2 ("Swarm elasticity via edge-cloud interplay") focuses

on offloading parts of the computations running on the SmartEdge platform from edge nodes

to potentially more powerful nodes (e.g., specialized SmartEdge nodes benefitting from some

acceleration capabilities, or powerful nodes running in the Cloud) or better-connected nodes

(e.g., central nodes, routers or switches). Specifically, the task develops a series of mechanisms

to elastically use resources and offload specific stateful subqueries and AI operations from edge

nodes to further nodes. To do so, this task is based on three technical pillars: i) a dedicated

declarative data exchange language, zero-copy networking protocol and interconnect stack to

exchange data with the best possible performance and lowest latency between nodes; ii) a set

of accelerated operators to dynamically offload portions of the SmartEdge workload to specific

accelerators running on further nodes; and iii) a runtime to optimize and streamline some of the

more complex offloaded operations.

The rest of the section dedicated to this task is structured as follows:

Sections 3.1.1, 3.1.2, and 3.1.3 briefly introduce each of the three technical pillars central to this

task; Section 3.1.4 explains the low-code, declarative approach we took for all technical pillars.

Sections 3.2.1, 3.2.2, and 3.2.3 describe the first implementation of each pillar, including details

on their integration with use-cases.

Sections 3.3, finally, describes preliminary results for some of the most advanced components

introduced in this section.

3.1.1 Declarative Data Exchange

The first technical pillar of Task T5.2, Declarative Data Exchange, comprises a set of new

protocols and interconnect standards to exchange data as efficiently as possible between two

SmartEdge nodes. To do so, we leverage a series of new technologies to bring latency as low as

possible, while freeing CPU cycles by utilizing hardware acceleration as often as possible.

The first technology we utilize towards that goal is Remote Direct Memory Access (RDMA).

RDMA is a network technology that enables fast data transfer between computers by allowing

one machine to directly read from or write to another machine's memory, bypassing the

operating system and the CPU. This bypassing significantly reduces data transfer latency and

CPU usage, making RDMA ideal for high-performance computing or environments that require

quick, efficient data sharing, like SmartEdge. RDMA achieves this by offloading data transfer

tasks to the network adapter, which directly handles memory access, resulting in both higher

throughput and reduced CPU workload. However, RDMA poses many problems in practice. In

data-intensive applications it often results in fragmented and smaller data transfers that are

detrimental to the overall performance [Ryser22]. To remedy this, the first part of T5.2.

leverages dedicated Declarative-RDMA (D-RDMA) protocols to speed up data transfer in

SmartEdge; Instead of transmitting individual data fragments through RDMA (which wastes CPU

cycles and memory bandwidth), the application specifies in a declarative, low-code language

D5.2 SmartEdge GA 101092908

37

what data should be transmitted, letting the networking card optimize the transfer by issuing

larger DMAs.

Two further next-generation technologies are used to streamline the transfers: CXL and

advanced Flash controllers. Compute eXpress Link (CXL) is a very new, high-speed interconnect

standard designed to optimize data transfer and resource sharing between CPUs and further

devices (like GPUs, memory modules, or accelerators, e.g., for data-intensive operations or AI).

CXL provides low-latency, high-bandwidth connections that enhance data flow efficiency. Its

three sub-protocols (CXL.io for I/O operations, CXL.cache for shared cache, and CXL.mem for

memory pooling) work together to allow flexible memory sharing and pooling, enabling devices

to access and use memory directly and coherently across different servers. CXL enables more

scalable, flexible, and resource-efficient architectures in environments like SmartEdge where

efficient, low-latency data exchange is crucial.

Finally, we designed and implemented a framework to optimize memory operations on Flash

channel controllers. Our new framework, called BABOL, exposes an asynchronous programming

model in which Flash operations are written in software and enqueue instructions that are later

executed by programmable hardware. This allows to develop advanced, optimized operations

more easily than in traditional synchronous, hardware-only controllers, hence pushing the

performance of Declarative Data Exchange even further.

Our Declarative Data Exchange framework is further described in Section 3.2.1 (in terms of

implementation details and integration) and in Section 3.3.1 (preliminary results).

3.1.2 Accelerated Operators

Once the necessary data has been transmitted to a remote node or accelerator in the SmartEdge

swarm (or on the cloud) thanks to the technological stack introduced in the previous section,

one needs an efficient operator to carry out the task on the new node. Many different operators

could be designed and implemented in our context, for tackling tasks as diverse as data-intensive

operations, signal processing, or AI. Given the peculiarities of SmartEdge, we decided to focus

on three very different cases.

First, we designed and implemented an operator to handle a specific AI task central to some of

the SmartEdge use-cases: that of face blurring images (e.g., for privacy concerns). More

specifically, we designed and implemented a lightweight operator taking as input either

individual pictures or videos, and automatically identifying and blurring faces in the content

leveraging a dedicated Data Processing Unit (DPU, i.e., a programmable computer processor

that tightly integrates a general-purpose CPU with network interface hardware).

Second, as efficient data gathering from multiple edge nodes is one of the key data-intensive

tasks in SmartEdge, we decided to work on a component to do so. This second operator works

by offloading the construction of an integrated data structure (i.e., a view) gathering and

consolidating information from several smart devices in an incremental manner.

Finally, as the SmartEdge architecture (D2.2) specifies, all SmartEdge nodes are supposed to

have some degree of P4 capabilities. P4 (Programming Protocol-Independent Packet Processors)

D5.2 SmartEdge GA 101092908

38

is a high-level programming language designed to define and control how packets are processed

on networking devices or hardware accelerators, enabling more flexible, efficient, and

application-specific data processing and transfer functions. Taking advantage of this fact, we

designed a series of operators for accelerating data processing using P4 accelerators. More

specifically, we focused on accelerating generic graph operations and SPARQL queries, which

are both very common in SmartEdge.

Those various operators are further described in Section 3.2.2 (in terms of implementation

details and integration) and in Section 3.3.2 (preliminary results).

3.1.3 Runtime Optimizer

The last component of Task T5.2 is a component that runs on the SmartEdge Orchestrator (or

SmartEdge nodes having advanced P4 hardware acceleration) and optimizes complex data-

intensive tasks (implemented T5.3 Section 4). As with all other components designed in the

context of this task, the optimizer uses high-level, low-code declarative constructs as input,

more specifically a declarative program describing the complex operations to offload. The

optimizer then represents this program into a Directed Acyclic Graph of operations, that is then

optimized.

The optimization process itself leverages a system catalog containing set of rules to rewrite and

optimize the offloading operation into an efficient physical pipeline that can be run on one or

several P4-accelerated nodes (in a way similar to the optimization of complex programs in data-

intensive systems). The optimization process spans different layers: i) physical optimizations to

pick the most efficient plans to run the complex offloading, ii) logical optimizations based on

rules to move various operators and obtain more efficient offloading plans, and iii) hardware-

specific optimizations, for example for fusing operators that can be jointly run in a common P4

pipeline.

The optimizer is further described in Section 3.2.3 (in terms of implementation details and

integration) and in Section 3.3.3 (preliminary results).

3.1.4 Low-Code, Declarative Programming

In the end, the underlying vision behind task T5.2. is to combine recent advances in networking

and hardware platforms with high-level, declarative, and low-code constructs. We call this vision

heterogenous, low-code computing, which extends the general low-code approach mentioned

in Section 1 above. The idea is to leverage a subset of very recent technologies and

heterogeneous hardware platforms to run some of the SmartEdge workloads as efficiently as

possible.

For our data exchange scheme, this declarative approach is visible using RDMA verbs (verbs are

the API functions that define how applications interact with RDMA hardware) and the

declaration of non-contiguous data regions to transfer. Since D-RDMA is declarative by

definition, its operations can be directly serialized in a recipe and invoked in a declarative

manner by a SmartEdge node.

D5.2 SmartEdge GA 101092908

39

For our offloaded operators, we adopt a fully declarative approach for our components running

on P4. Our offloading graph operations and offloading SPARQL components are fully declarative

as they only require the input of a specific graph pattern, or a specific SPARQL query,

respectively. Finally, our runtime optimizer works in a typically declarative way also, by taking

complex operations in the shape of trees of operators and optimizing them into more efficient

pipelines using our various optimization strategies.

3.2 COMPONENTS IMPLEMENTATIONS
We describe below the first implementation of the various technologies we just introduced

above, covering Declarative Data Exchange (Section 3.2.1), Offloaded Operators (Section 3.2.2),

and finally our Runtime Optimizer (Section 3.2.3).

3.2.1 Declarative Data Exchange Implementation

We describe below our first implementation of our Declarative Data Exchange stack, starting

with D-RDMA (Section 3.2.1.1) and CXL extensions (Section 3.2.1.2), before covering our new

Flash channel controller (Section 3.2.1.3). We explain our declarative, low-code approach in

Section 3.2.1.4 before commenting on the integration with SmartEdge use-cases in Section

3.2.1.5.

3.2.1.1 D-RDMA
We leverage our previous extension of RDMA, called D-RDMA (for Declarative-RDMA) for

initiating and orchestrating data transfers between high-speed SmartEdge nodes. D-RDMA was

already introduced in Deliverable D5.1, and we only describe the basics of our technology for

completeness below. The rest of Section 3.2.1. subsequently describes the brand-new features

that we implemented in the past year, namely CXL integration and flash channel optimization.

D-RDMA optimizes RDMA schedules of data-intensive operations using a declarative approach.

When using RDMA canonically without optimization, systems often generate lots of small DMA

operations for copying relevant data only (as we originally showed in [Ryser22]). Towards that

goal, D-RDMA allows to define non-continuous regions to transfer. We call such regions Non-

Contiguous Regions (NCRs). The most important NCRs are called Strided Regions. RDMA’s work

requests can be seen as a rudimentary language that can only describe contiguous regions. To

make it more expressive, Strided Regions are a construct to capture whole regions that present

data and gaps in regular patterns. A Strided Region is defined using a base pointer, a period

made of one or more elements, the width of the elements, and a stride. The stride is described

by a frequency, e.g., 1 every 2 elements, and an optional start position, if different than the base

address. Strided Regions are expressive enough to handle most data transfers in SmartEdge and

other data-intensive projects. Figure 3-1 below gives a reminder of a simple example of a Strided

Region.

D5.2 SmartEdge GA 101092908

40

Figure 3-1. Contiguous Regions are insufficient to capture data patterns. Non-Contiguous Regions, such as Strided

Regions, can be used to describe data and gaps in a compact way, declarative, and high-level manner and to

optimize RDMA.

A D-RDMA request containing NCRs is handled by a specific runtime on a node. Figure 3-2 (a)

gives an overview of the workflow from a system’s point of view. First, the application sets up

the connections (queues) to the remote hosts as it would in an RDMA scenario. It can then use

the RDMA verbs API to send transmission instructions to the network card. Certain verbs would

take Non-Contiguous Regions (NCRs) to describe the requests. Upon receiving an NCR-based

request, the runtime in the node forwards it to an optimizer, which determines the fastest DMA

schedule to bring the data from the host. The runtime then executes this DMA schedule, and,

as data arrives, it assembles the payloads contained in the NCRs before forming and sending out

the packets.

Internally, the runtime comprises five components, shown in Figure 3-2 (b). Two of these

components are like those we would encounter in a regular RDMA setting: the DMA Engine is

responsible for transferring data from the host’s memory into the network card’s; and the

Packetizer envelopes payload data with headers and trailers for the network protocol the card

is handling. The third component, the Segmented Memory, is also present in regular settings

but it is implemented slightly differently in D-RDMA: it considers smaller, independent memory

buffers, which are used by the DMA engine to write data in a stripped way. The remaining two

components, the Optimizer and the (Payload) Assembler, are extensions required to process D-

RDMA and are respectively responsible for deciding whether to transmit data chunks

individually or to regroup them, and to dynamically assemble the payload of each packet to be

transmitted.

Figure 3-2. The implementation of D-RDMA from a system’s perspective (a) and from a NIC’s perspective (b). The

application sets up a connection as usual (1). It uses declarative, Non-Contiguous Regions instead of SGEs to post

work to the card (2). The card determines a DMA schedule upon receiving the NCR list (3,3a,3b). The card issues the

DMAs (4). The card uses the row window for that request to find and packetize the data (5,5a,5b).

D5.2 SmartEdge GA 101092908

41

As a result, D-RDMA can describe data transfers declaratively, and can operate the transfers

much closer to line speed, even for fragmented data and data-intensive scenarios such as those

presented in SmartEdge.

3.2.1.2 CXL Extensions
The second piece of technology that we leverage to accelerate the offloading operation in the

context of this task is CXL. Compute Express Link (CXL) is a very new and open standard for high-

speed interconnect technology designed to enhance data transfer between a central processing

unit (CPU) and hardware accelerators (GPUs, FPGAs), memory, and storage devices. CXL is built

on top of the PCIe physical layer but offers significant advantages in terms of reduced latency,

memory coherence, and scalability, making it especially beneficial for modern computing

workloads such as data-intensive and IoT tasks.

CXL enables direct, high-speed communication between the CPU and other components,

bypassing traditional bottlenecks that occur in systems with multiple independent buses. By

leveraging PCIe’s established physical layer and adding protocol enhancements, CXL allows for

faster data transfers with reduced latency, which is critical in our context for real-time data

processing and high-throughput communication between accelerators and memory.

One of the most important features of CXL is memory coherence. In traditional systems, when

accelerators access data from the CPU’s memory, they often have their own memory space,

requiring expensive and time-consuming data copies between the CPU and the accelerator.

With CXL, memory can be shared between the CPU and other devices in a coherent manner,

meaning both the CPU and the accelerator can access and modify the same data without

needing redundant copies. This improves both performance and efficiency by reducing the

amount of memory replication and synchronization overhead.

CXL also enables memory pooling, which allows multiple devices to access a shared pool of

memory resources. For some SmartEdge nodes, this means reducing the need for dedicated

memory on each device, resulting in higher memory utilization and reduced costs. Devices can

dynamically request and release memory as needed, improving scalability and resource

efficiency. While very recent, CXL is an open standard, meaning that it will be supported by a

wide range of hardware vendors in the future, creating a more unified and interoperable

ecosystem by standardizing the interconnects between CPUs, memory, and accelerators.

We designed an extension of CXL called CXL kernels [Lee24] to automate part of the offloading

operations in SmartEdge. The idea is to leverage advanced hardware operation to streamline

read/writes at the application layer. Nodes will be able to expose a Database Kernel (DBK) such

that read/writes against some specific memory range would trigger data-intensive

computations that the kernel would perform directly inside the device. The nodes will use

coherence traffic to monitor requests, prepare ahead of time, and ultimately answer data

requests more efficiently. We believe that CXL Kernels can support new generations of

heterogeneous data platforms (such as SmartEdge) with unprecedented efficiency,

performance, and functionality.

CXL devices come in three main types, each designed to optimize different aspects of data

handling and computing efficiency:

D5.2 SmartEdge GA 101092908

42

• Type 1: Accelerator Devices. These devices, like GPUs, FPGAs, and AI/ML accelerators,

leverage CXL primarily for high-speed data and cache sharing between the CPU and the

accelerator. Two specific protocols, CXL.cache and CXL.io, enable them to access and

modify data in CPU memory without duplicating it, reducing latency and increasing

performance in compute-intensive tasks.

• Type 2: Accelerators with Local Memory. Type 2 devices are similar to Type 1

accelerators but include their own dedicated memory in addition to accessing CPU

memory. This type uses all three CXL protocols (CXL.io, CXL.cache, and CXL.mem),

allowing them to cache data, use local memory, and share CPU memory. This flexibility

enables complex applications to use both local and shared memory resources efficiently.

• Type 3: Memory Expanders. Type 3 devices are memory expansion modules that add

extra memory capacity to the system without any processing capabilities. They use only

the CXL.mem and CXL.io protocols, allowing the CPU to treat this memory as an

extension of its own, ideal for memory pooling and expanding memory in data-intensive

environments like SmartEdge.

Figure 3-3 below depicts CXL operations ensuring data coherence between two CPUs, and

between a CPU and a memory expander (a Type 3 device).

Figure 3-3. (Left) CXL ensuring data coherence across two CPUs: To access or modify the contents of a memory

address, a core brings a copy of it to its cache (1). This can be triggered by issuing a load or a store instruction. Upon

receiving the instruction, the Cache Controller issues a request to either get a copy or put (write) it‘s copy of the

modified content from/back to memory (2). The Directory Controller receives this message and executes the required

memory access, either sending a copy of the read data to the Cache Controller or acknowledging that the modified

data was written (3). The Cache Controller can then signal to the core that the instruction is complete. Note that if

the address required were held by a remote Directory Controller, the Cache Controller would have targeted it instead

(3). (Right) CXL data coherence with a memory expander device: The Cache Controller asks or sends a cache line as

before but is unaware of who is backing that address. Upon noticing that the request is for the expanded memory

area, the Directory Controller issues the proper command to the Device Controller (3), which in turn interacts with

the local memory (4) and responds. It is the Directory Controller that sends the cache line or the acknowledgment

back as if the line accessed was local (5).

We propose a component that supports simple and efficient access to expanded memory

through memory reads and writes, and rich semantics associated to operations on a given

memory range. Our component amounts to a Type 2 device. It exposes memory regions to the

server through cxl.mem, and it caches memory from the host through cxl.cache, as depicted in

D5.2 SmartEdge GA 101092908

43

Figure 3-3. We provide a simple API to map physical addresses from the device onto process

memory. Once this mapping is done, applications access these memory ranges “as usual.”

Internally, however, the device offers a powerful indirection mechanism. It associates a range

of addresses with what we call a kernel. A kernel is a function that provides well-defined

semantics for reads and writes. A kernel that implements memory expansion semantics will

simply redirect reads/writes to a selected memory type. We will provide such a kernel with the

device that can opt between DRAM or NAND-Flash as backing memory. As Figure 3-4 (left)

shows, the device can still present itself to the system as an NVMe device and offer a traditional

data path. Nothing prevents a legacy application from using it that way. As explained above, a

Type 2 device can contribute memory to the system and cache data from the system locally. To

do so, it implements a Cache Controller that interacts with the system’s Directory Controller via

cxl.cache. Interestingly, Type 2 devices release control of their memory range to the Directory

Controller on the host), which forces the device to notify the Directory Controller if it wishes to

cache its own memory. In our device, a kernel has the option to request shared cached lines on

any portion of the address ranges it exposes. The benefit of this arrangement is subtle but

powerful. If a core on the host wishes to access a cached memory address in exclusive mode—

e.g., it wishes to write a new entry in an exposed area—the device can be notified of this intent

through a cache invalidation message. Figure 3-4 (right) illustrates this case. This early

notification of an intent to write gives the device much more time to prepare for the write than

it would have if it learned about the write as it was requested.

Figure 3-4.(Left) Our device can be accessed as a conventional SSD or through CXL. In the latter case, the messages

to a given memory address range will be directed to its assigned kernel. The kernel can choose which kind of storage

type to use and how. (Right) As a CXL Type 2 device, our device learns about the early intent to write. The reason is

that, to give a core exclusive access to a memory address, the Directory Controller must invalidate all accesses given

before. The invalidation is an early signal to the Type 2 device that it should prepare to hear a write request for that

address in the short future, giving it ample time to prepare.

3.2.1.3 Flash Channel Controller
The third and last piece of technology we leverage to optimize the data offload is a new

software-defined Flash controller that can be used to optimize complex data transfer

D5.2 SmartEdge GA 101092908

44

operations. NAND Flash Storage Controllers are a crucial component of data-intensive systems.

They provide an abstraction of Flash packages to the SSD firmware by translating high-level

operations, such as a Page Program or a Block Erase, into low-level signals. In theory, the Open

NAND Flash Interface (ONFI) specification standardizes this interface. The standard specifies the

number and voltage of pins a compliant Flash package must have and outlines how different

data transfer speeds and modes (synchronous and asynchronous) can be achieved via these

pins. From an electrical interoperability perspective, the standard can be considered successful.

However, the standard lacks important optimizations since it abstracts away relevant internal

Flash Array details.

Our new controller, introduced in [Park24], exposes an asynchronous programming model in

which Flash operations, written in software enqueue instructions, are later executed by

optimized programmable hardware. This asynchronous programming model allows architects

to develop advanced, optimized operations more easily than in traditional synchronous,

hardware-only controllers.

Our architecture is depicted in Figures 3-5 (left), and is built on two key principles:

1. Separation of scheduling and execution: in our new architecture, a description of the

desired segment is produced prior to the opportunity to execute it. This is reflected by

the existence of two distinct modules, as shown in Figure 3-5. The module that describes

a segment to be executed in the future is called Operation Scheduling. The module that

produces that segment once the execution is possible is called Operation Execution. We

call this architecture asynchronous because it separates the description of what a next

segment to issue should be from its actual execution.

2. Hardware/software co-design: our solution implements operation scheduling entirely in

software. A typical Flash package carries one or more Logical Units (LUNs), each of which

can perform an operation independently. LUNs are often busy performing internal data

movements (to/from the array and page register) that can take tens of microseconds.

While a single LUN is busy in a given operation, there is enough time to schedule the

following operation in software. Moreover, several LUNs share a channel, which is

unavailable during data transfers between the controller and LUN. Similarly, while a

data transfer is ongoing, there is enough time to decide in software on the next task to

give a particular LUN.

Figure 3-5: (Left) Our new controller comprises three components: stream processors, operation

scheduling, and operation execution. Execution has strict time constraints and is implemented in

hardware. The implementation, however, does not use hard-coded waveforms. It allows

programmatically building them through μFSMs, which are software-configurable waveform

segments emitters. Operations such as READ, PROGRAM, and ERASE are written in software and,

D5.2 SmartEdge GA 101092908

45

with the help of the schedulers, drive the μFSM. (Right) Examples of steps an operation goes

through as it is implemented in BABOL.

Thanks to these two new principles, BABOL allows architects to encode standard and

nonstandard IO operations easily. It also allows them to define and implement different

scheduling strategies.

The basic dialog unit between a controller and the Flash packages is what the ONFI standard

calls a Basic Timing Cycle (BTC). Simply put, a BTC is a fragment that establishes one piece of

information (e.g., what command to execute, or what address to target, etc.) between a

controller and a package. Expressing a full command requires a concatenation of BTCs in a pre-

established order that may be unique to each Flash package. Our solution expands the notion

of BTCs by replacing them with μFSMs (micro Finite-State Machines), a more powerful way to

generate waveform segments to control the reading, writing, and erasing operations of NAND

flash memory cells. Every μFSM is parameterized and can issue many variations of the waveform

segment. Some μFSMs are a combination of more than one ONFI BTC, while others find no

similar BTC in the standard. The idea of parameterizing a μFSM may sound simple, but

ultimately, describing segments as patterns rather than constant waveforms is what gives our

scheme the expressive power to encode both basic and advanced operations.

Initial results of our new architecture based on a first implementation of μFSMs are given below

in Section 3.3.1.

3.2.1.4 Integration with Use-Cases
Our first focus for Declarative Data Exchange is for UC2, though we plan to design solutions that

will be as generic as possible and that will be useful for most use-cases. FRIB visited AALTO and

CONVEQS in Summer 2023 to understand both the specificities of the use-case and the hardware

acceleration that would be possible in that context. Subsequently, CONVEQS visited FRIB in

Summer 2024 to further align.

Both the equipment on the road (see Figure 3-6 a, which depicts road units deployed on road

pillars) and equipment in instrumented cars (see Figure 3-6 b) support multi-modal sensing

(including cameras, LiDARS, and GPS sensors) and could include additional equipment for

hardware acceleration (e.g., in the form of low-powered Xiling FPGAs or P4 accelerators).

Figure 3-7 gives an overview of how Declarative Data Exchange integrates with UC2. Offloading

data will leverage D-RDMA (with further optimization provided by our CXL extensions and our

new flash memory channel controller for those nodes equipped with further hardware). In

addition to fast data transfers, we are extending Declarative Data Exchange with filtering

capabilities, in order to efficiently identify and remove portions of the raw data that can be cut

out prior to transmission (see bottom of Figure 3-7). In the context of UC2, license plate numbers

could for example be filtered out prior to transmission (for privacy reasons), or part of a point

cloud coming from a LiDAR installed on an instrumented car. The LiDAR extensions are currently

being implemented in close collaboration with our work performed in WP4 (see LiDAR

Processing Acceleration in D4.2).

D5.2 SmartEdge GA 101092908

46

Figure 3-6: Some of the nodes and hardware devices available in Helsinki for UC2 on the road (a) and in

instrumented cars (b).

Figure 3-7: An example of a Declarative Data Exchange use for UC2

3.2.2 Offloaded Operators Implementation

Once data has been exchanged between two nodes in SmartEdge, the offload of the operation

itself can start. Beyond simply leveraging more powerful or more connected nodes that will

accelerate the tasks using better hardware, we provide special support for some of the

important operations in SmartEdge that require hardware acceleration. We discuss the design

and the implementation of four such operators below, for accelerating face blurring,

information gathering, graph operations, and SPARQL query execution, respectively.

D5.2 SmartEdge GA 101092908

47

3.2.2.1 Offloading Face Blurring
CNIT contributes to this task by implementing a face blur detection and blur algorithm using

OpenCV-compatible libraries, aiming to make it run on the ARM processor core available on the

BlueField-2 DPU. Previous versions of the algorithm were based on face_detect5

(https://github.com/opencv/opencv/blob/4.x/samples/dnn/face_detect.cpp), and they used

YuNet detection model to perform the face recognition task.

The YuNet detection model leverages on an open-source library for CNN-based face detection

in images. The CNN model has been converted to static variables in C source files. The source

code does not depend on any other libraries, and it may be compiled on any platform with C++

compiler.

The most recent version is based on YOLO9, which demonstrated equally good performance for

real-time scenarios and allowed for a smoother integration with other algorithms for more

complex applications or processing.

After detecting faces, the algorithm blurs the detected faces, granting individual’s privacy before

any other kind of image processing. A sample image is reported below (see Figure 3-8 below) to

provide an example of the algorithm process. Preliminary performance results on our face

blurring approach are given in Section 3.3.2.

Default image Image with detected faces Image with blurred faces

Figure 3-8: Sample results for the offloaded face blurring operation showing the original image (left), the image with

faces detected by the algorithm (center), and the resulting blurred image (right).

3.2.2.2 Integrated Data View
The queryable database for FPGA-accelerated Roadside Units (RSUs) is a critical component in

enhancing the real-time responsiveness and operational efficiency of Intelligent Transportation

Systems (ITS). This system is designed to address challenges like latency, scalability, and the

seamless integration of data from multiple sensors. It achieves this by providing a dynamic, real-

time repository of traffic information, which is both accessible and modifiable in real time.

The need for such a database arises from the limitations of conventional RSU architectures,

which often rely on cloud or centralized servers for data storage and processing. This traditional

approach introduces significant latency, particularly when dealing with time-sensitive tasks like

collision avoidance or adaptive traffic light control. A local, queryable database allows the RSU

to perform data-intensive tasks at the edge, ensuring immediate access to information and

reducing reliance on external networks. The database not only accelerates data processing but

also enhances situational awareness by maintaining an up-to-date representation of the local

https://github.com/opencv/opencv/blob/4.x/samples/dnn/face_detect.cpp

D5.2 SmartEdge GA 101092908

48

traffic environment. This is particularly beneficial for autonomous vehicles and advanced driver-

assistance systems, which require precise, low-latency data for navigation and decision-making.

The database is accessible to various stakeholders in the ITS ecosystem. Smart vehicles equipped

with Vehicle-to-Everything (V2X) communication technology can query the database to obtain

real-time information about nearby objects or traffic conditions. This enables vehicles to

optimize navigation, avoid collisions, and enhance fuel efficiency. Traffic management centers

can use the database to monitor and manage traffic flows across intersections, dynamically

adjust signal timings, and respond effectively to incidents. Additionally, other RSUs in a

connected network can exchange queries to coordinate actions, such as rerouting vehicles or

managing regional traffic congestion.

The architecture of the database is designed with hardware efficiency in mind, leveraging the

capabilities of FPGA technology to manage memory and processing tasks. The data pipeline

starts with the reception of raw sensor data, which is processed through a series of modules.

These include data filtration (to remove outdated or irrelevant information), transformation (to

standardize data formats), and association (to map sensor-specific identifiers to globally unique

IDs). The database continuously updates itself with the latest information from connected

sensors, ensuring that it remains a reliable source of real-time data.

Memory structure plays a pivotal role in the functionality of the database. The database uses a

hierarchical memory architecture, divided into four categories based on the type of data being

stored. The associations category, represented by the M_Assoc module, handles the mapping

between global IDs and sensor-specific IDs, facilitating quick lookup of associated objects across

multiple sensors. The detections category, which includes M_Det and M_Sub, stores data for

newly detected objects. M_Det maintains information about all detections, while M_Sub

focuses on the subset relevant to association and matching algorithms. The objects category,

comprising M_Flag, M_Pre, and M_Obj modules, is dedicated to tracking objects that have been

assigned global IDs. These modules manage various aspects of the object lifecycle, from flagging

and prediction to storing current attributes. Finally, the costs category, encapsulated in the

M_Cost module, holds the cost matrix used for associating detections with tracked objects.

Among them, association-related and object-related databases are directly accessed when

being queryed.

When a query is made, the database retrieves the required information based on specific keys.

These keys include object identifiers (global IDs), spatial attributes (bounding box coordinates

or positional data), motion characteristics (velocity and acceleration), and temporal markers

(timestamps of the last update). Additionally, status flags indicate the validity and update status

of objects, while predicted states offer forward-looking insights based on Kalman filter

predictions. For diagnostic purposes, the database can also return cost values associated with

object-detection matching.

By integrating sensor fusion algorithms with real-time data management, the database not only

serves immediate needs but also lays the groundwork for future ITS applications. For example,

it could enable predictive traffic management, where RSUs anticipate congestion patterns and

adjust traffic signals preemptively. The modular and hierarchical design ensures that the

database can adapt to increasing traffic demands and evolving technological requirements.

D5.2 SmartEdge GA 101092908

49

3.2.2.3 Offloading Graph Operations
As introduced in Deliverable D5.1, the first broad type of operation offload we consider is based

on generic graph operations accelerated on powerful P4 nodes. The main accelerators we

investigate in that context are programmable switches supporting P4 operations (but note that

the techniques we design below can take advantage of further P4 accelerators, like DPUs or

smart NICs that are also leveraged in other SmartEdge tasks).

As a reminder (see D5.1 for details), a programmable hardware switch is a platform unlike any

other. It is divided into two semi-independent units, a control plane and a data plane, as Figure

3-10 depicts. The control plane is responsible for management tasks, e.g., bringing switch ports

up or down. It usually consists of an x86 machine, an Intel Xeon in most cases, and it can run a

common Linux distribution. The control plane functionality is available through C and Python

libraries provided by the switch manufacturer.

The data plane is the component that receives packets from the network ports and forwards

them back to their destination ports. The forwarding decision is the result of a computation— a

networking protocol. In a programmable switch, the networking protocols are expressed as

programs. These switches come with SDKs that can compile such programs into binaries they

can run.

To explain how to program the data plane, we need to introduce a few concepts. The reason is

that the programming model the switch supports is quite unique. The data plane consists of

shared-nothing units called Match-Action Units (MAUs or, interchangeably, stages) arranged in

a pipeline. An MAU is for a switch what a core is for a general-purpose x86 CPU. MAUs, however,

have many constraints. Chief among them is that they can only send their results to the next

MAU in the pipeline and can only receive input from the previous one.

Figure 3-10: (Top) The switch is composed of a control plane and a data plane. The data plane has a pipeline of

Match-Action Units (MAUs) with two types of storage: Match-Action Tables (MATs) and Registers (REGs). (Bottom) A

MAT can read and alter a packet by: (1) selecting the field(s) to match; (2) performing the match, e.g., via equality

comparison, and if an entry is found; (3) executing the matched entry's action, altering the packet's contents. A

register works similarly, although the access to registers is positional.

D5.2 SmartEdge GA 101092908

50

We designed and implemented the offload of graph-based operations, most specifically Graph

Pattern Mining (GPM), which is an important class of graph analysis. It finds all subgraph

occurrences that match specific patterns. We decided to start with offloading GPM operations

for two reasons: i) because GPM operations are, we believe, a very good match with the (limited)

expressivity of P4 and hence were a great choice as a first offloading experiment and ii) because

GPM operations are prominent in many applications, including listing cliques, finding motifs, and

in mining frequent subgraphs.

A common approach to execute GPM algorithms is to iterate over all possible subgraphs and

check if they match the desired pattern. This is done using a two-step process. First, subgraph

enumeration extends subgraphs by adding one more node. This generates intermediate

candidate subgraphs. Second, pattern analysis examines these intermediate subgraphs and

looks for the pattern. Successful candidates are the ones that meet the pattern's matching

criteria. This approach is iterative; meaning that the successful subgraphs that passed the

pattern analysis are then extended again by adding one more node, and so on. The process ends

when no further subgraphs can be extended.

We pioneered a brand-new technique to offload GPM tasks in the context of SmartEdge using a

powerful node with advanced P4 capabilities. The overall idea behind the offloading is illustrated

in Figure 3-11 below. Numbers in white illustrate the process from the edge nodes perspective:

(1) a node syncs with the orchestrator (in this case running on the control plane) and solicits

some work. (2) The requesting node is assigned a fragment of the problem, and (3) starts

processing that fragment. (4) The resulting patterns are output by the nodes. The workflow on

the accelerator, in red, is somewhat similar, even though the individual steps are performed

differently: (1) the switch registers to the orchestrator to announce that it can accelerate part

of the process. (2) the switch accelerator is assigned specific graph fragments (3) The nodes send

the corresponding data (a subgraph) by D-RDMA to the accelerator (4) The subgraph is handled

on the P4-accelerated node and the desired patterns are emitted as results.

Figure 3-11: Our offloading framework main workflow. The edge nodes and a P4 accelerator (in this case a powerful

and programmable P4 switch) operate independently but can offload GPM computations dynamically. In red, part of

the problem is offloaded to the powerful P4 accelerator: (1) Resources or the P4 switch’s data plane become

available and (2) the switch accelerator is assigned specific graph fragments (3) The nodes send the corresponding

data (a subgraph) by RDMA (4) The subgraph is handled on the P4-accelerated node and the desired patterns are

emitted as a result.

While conceptually simple, the whole process is technically complex. It was the subject of full

research paper presented at SIGMOD (the top venue for data-intensive systems) in 2023 (see

D5.2 SmartEdge GA 101092908

51

[Hussein23] for details). This complexity stems from two points: first, while we picked a relatively

simple task (GPM) to offload, the programming model of P4 is limited and reformulating GPM

in a P4-compatible, feed-forward fashion was technically challenging. Second, the P4 switch we

used is actually very powerful, and optimizing the overall offloading process to take full

advantage of the accelerator was technically challenging. We report on a number of new results

on this task in Section 3.3.2 below.

3.2.2.4 Offloading SPARQL Execution
Our second focus in terms of offloading generic operations in SmartEdge leveraging P4 focuses

on SPARQL. SPARQL is a very generic language, that is heavily used to describe both data and

operations in SmartEdge. Offloading SPARQL operations to P4-accelerated devices could

considerably accelerate the SmartEdge workload, but is technically challenging since SPARQL is

a full-fledged, expressive language with many different and powerful operators.

We focus on accelerating a subset of SPARQL in P4, focusing on key operations for SmartEdge.

Our first interest is in conjunction and disjunction of triple patterns: a triple pattern is a basic

query structure in RDF/SPARQL that matches a subject-predicate-object relationship, potentially

using variables for flexible data retrieval. The support of triple patterns allows us to support a

wide variety of use-cases, without having to implement all the complexities of the language. As

follow-up goals, we plan to focus on Property paths using advanced path expressions supported

by SPARQL 1.1 (e.g., AlternativePath or ZeroOrMorePath), and complex aggregate operations

supporting GroupBy and Having.

We have generalized the design that we took for our first offloading operation (illustrated in

Figure 3-11) for those points. In terms of techniques, we are basing our offload on part of our

GPM framework (since both GPM operations and advanced path operations require exploring

parts of graphs in an iterative manner). For triple patterns, we are extending our initial, previous

work on offloading relational operators [Lerner2019].

The design and implementation of this offloading solution is a collaboration between FRIB and

TUB that started in mid 2024 and will continue until the end of the project.

3.2.2.5 Integration with Use-Cases
The face blurring component integrates with Use Case 3 (Collaborative Robotic Moves), which

aims to offer autonomous robots controlled with a swarm intelligence system able to grant

superior reliability, efficiency and security in a smart factory scenario. Robots, in this scenario,

aim to be autonomous in decision-making procedures and will be able to interact with other

robots and with human operators. Human-device interaction must occur granting full respect of

an individual’s privacy on top of any other data analysis and exchange performed by the

SmartEdge service. Image processing necessary to grant privacy should not impair

communication rate within the swarm intelligence system. To offer respect of privacy, any

acquired image and/or video must be processed with proper face-detection and blur algorithm

before any further analysis or communication performed by the swarm.

The other offloaded operators have been designed with UC2 in mind, though they could be

easily integrated with further use-cases as they offload generic operations that could be useful

to most use-cases. Figure 3-12 gives an overview of how our offloaded operators integrate with

UC2. As explained above, lighter SmartEdge nodes exchange data through Declarative Data

Exchange to more powerful nodes, like in intelligent Road Side Unit (RSU). The RSU can then

D5.2 SmartEdge GA 101092908

52

take over complex computations more efficiently using hardware acceleration (called

Declarative Processing [DP] in Figure 3-12). Advanced operators such as those described above

(e.g., face blurring, complex graph or SPARQL operations) can then run either on a DPU or on a

hardware component with advanced P4 functionalities.

Figure 3-12: Integration of offloaded operators (through Declarative Processing) with UC2

3.2.3 Runtime Optimizer Implementation

Finally, we designed a component running on the SmartEdge orchestrator to optimize the

offloading process of complex, data-driven operations. The overall design of this runtime

optimizer is given below in Figure 3-13.

Figure 3-13: The design of our runtime optimizer for offloading operations in SmartEdge; as most components from

this task, the optimizer will take a declarative specification of complex operations to offload (1), will translate this

high-level representation of the complex operation into some intermediate representation (2) that can be translated

into P4 and optimized before instantiating the optimized pipeline that needs to be run on a one or several

accelerated node.

As with most other components designed in the context of this task, the optimizer uses high-

level, low-code declarative constructs as input, more specifically a declarative program

describing the complex operations to offload. The optimizer then represents this program into

a Directed Acyclic Graph of operations, that are then translated into some intermediate

representation to be optimized. The optimization process itself leverages a system catalog

D5.2 SmartEdge GA 101092908

53

containing set of rules to rewrite and optimize the offloading operation into an efficient physical

pipeline that can be run on one or several P4-accelerated nodes (in a way similar to the

optimization of complex declarative queries in data-intensive systems). The optimization

process spans three different layers, as illustrated in Figure 3-14: 1. physical optimizations (e.g.,

based on statistics to pick the most efficient physical plan to run the complex offloading), 2.

logical optimization (e.g., based on logical rules on how to move various operators to obtain

more efficient offloading plans) and 3. hardware-specific optimizations (e.g., fusion of operators

that can be jointly run in a common P4 pipeline, for example fusing a join and a group-by

operation).

Figure 3-14: the three layers of optimization that will be supported by our runtime optimizer.

We describe below a series of techniques we have designed and started implementing in this

context, including:

3.2.3.1 Optimized Resource Allocation on P4 Hardware
A key challenge of offloading complex operations to a P4 hardware accelerator is the allocation

of resources. Programmers need to interact with the compiler to define memory needs.

Unfortunately, coding P4 hardware accelerator like programmable switches involves a steep

learning curve. Managing the logic and memory requirements is often accomplished through

access to NDA-protected documentation or trial-and-error coding lacking proper tool support.

We exemplify the allocation of memory for executing a join operation using the Intel Tofino2

switch. This switch allows a total of 48 SRAM blocks per stage.

Suppose that we want to execute a program with one join operation and we build the hash table

of the base relation of the join with one register, but the base relation 𝑅 requires the whole

SRAM of the processor stage to build its hash table. The open-source documentation says that

a single register can use a maximum of 35 SRAM blocks plus one additional block for control, as

shown in Figure 3-15 (a). The intuition is to code the maximum number of allowed blocks, but

we may find two problems using this approach.

First, if we try to use the remaining 12 blocks for building a second hash table, the logic of our

whole operation becomes more complex, as the hash tables would have different sizes. The

current extension of the P4 compiler to implement registers cannot increase the complexity that

D5.2 SmartEdge GA 101092908

54

much. The implementation of registers is restricted to executing two if-else pairs and read-

modify-write operations on a pair of registers. Second, contrary to the open-source

documentation, the current P4 compiler does not allow the use of all 35 documented blocks,

rejecting the program. Figure 3-15 (b) illustrates that a register is limited by the P4 compiler to

allocate a maximum number of 24 blocks. It also shows that the implementation of registers

only uses a single stage, another limitation in the allocation of memory space that must be

treated by the programmer.

Our solution is to implement multiple identical size registers in the same pipeline to have access

to more SRAM space as illustrated by Figure 3-15 (c). To facilitate the allocation of resources

with less human interaction, we extend the P4 compiler to generate hardware code for

optimizing specific operations. These operations create registers to run the operations in a

specific pipeline and occupy all available blocks in the processor stages.

This extension offers three advantages. First, we generate a simpler code logic. The code is

generated in only one control (e.g., code is generated in the ingress control). Second, we can

occupy all the available memory. Third, we enhance parallelism with multiple equally sized

registers within the same stage and pipeline, ultimately improving performance. For example,

in our switch, we generated code to occupy a total of 40 registers in the ingress pipeline divided

into 2 registers with 94,200 entries per stage. Figure 3-15 (d) illustrates this with an allocation

of 24 blocks for each register with two registers allocated per stage.

D5.2 SmartEdge GA 101092908

55

Figure 3-15: One-operation query SRAM allocation on an Intel Tofino2 architecture: naive vs. optimized resource

allocations.

3.2.3.2 Operator Fusion
We designed and implemented optimizations involving very common operations, i.e., joins and

group-by operations. We introduce the fusion operation with notation 𝑅 ⨝ 𝑆 that combines the

network execution of join and group-by operations. The fusion operation optimizes the

execution of these operations by eliminating the need for a separated group-by hash table and

the external drain procedure proposed in previous work. This leads to simplified logic and

reduces the memory footprint compared to other approaches.

Figure 3-16: the optimized fusion query plan with two distinct phases (building and probing the fusion table)

Algorithm 1 in Figure 3-16 describes the fusion operation. The fusion operation is divided into

two phases: a build and probe the fusion table, respectively. In the first phase, we built the

fusion table with tuples from the relation where the join key also serves as the group key (line

5). The fusion hash table uses a collision chain structure to occupy more memory across the

processor stages. The incoming tuples from the build table 𝑆 read the hash table entry in the

collision chain. If the entry is empty or the key matches, the fusion and aggregation tables are

updated. Otherwise, if the entry is occupied and the key does not match, the packet moves to

the next stage until the key gets inserted. In the aggregation hash table, the values are summed

and indexed by the same hash (lines 6 and 9). We mark the packet as dropped after updating

both fusion and aggregation tables. The algorithm guarantees that the collision chain of both

hash tables extends throughout all processor stages, maximizing memory utilization.

Following the creation of the fusion table, we probe the fusion table. The tuples of the probe

table check the collision chain and, in the case of a match, their packet moves forward to the

D5.2 SmartEdge GA 101092908

56

group-by stage. If a key is found in the fusion table (line 14), its packet is updated with the

aggregated value (line 15), and the final result is sent to the server without requiring any external

drain procedure. However, the implementation of the fusion operation requires two

adaptations. We adapt the packet format to accommodate the aggregated value. We also adapt

the wire format with MAUs that can read and write the aggregated values to the packets.

Figure 3-17 illustrates the fusion operation step by step. On the left side of the figure, Source S

has 5 tuples and is sent to the network switch to build the fusion hash table. In the middle, the

fusion hash table entries are indexed by a hash key calculated from column 𝑆.𝑐. The fusion hash

table also stores the aggregation values, which combine data from column 𝑆.𝑑 based on the

same hash key. Finally, on the right side, the other source 𝑅 has 5 tuples and is sent to the switch

for probing the fusion table. If a row in 𝑅 matches an entry in the fusion table, its packet gets

updated with the corresponding aggregation value and is forwarded to the server. Otherwise,

any rows in 𝑅 that do not find a match are eventually dropped.

Figure 3-17: Query executing the fusion operation. We build consider a hash-table with relation (i.e., source) 𝑆 and

aggregation attribute is 𝑆.𝑑. We stream source 𝑅. If there is a key match 𝑆.𝑐 = 𝑅.𝑎, we update the packet with the

aggregation value and forward it, otherwise we drop the packet.

3.2.3.3 Optimizing Join-Join Topologies
Another important case we successfully optimize on a P4 accelerator is complex queries

including several joins. Figure 3-18 illustrates two different cases with a sequence of two join

operations. We introduce two different ways to build the hash tables and optimize the join

operations. In the left-deep plan, the hash tables are built from the result of each join. In the

right-deep plan, we build the hash tables out of the relations 𝑅 and 𝑇, and we stream relation 𝑆

to probe the hash tables in a pipelined fashion.

D5.2 SmartEdge GA 101092908

57

Figure 3-18: Different execution strategies for query (𝑅 ⨝ 𝑆 ⨝ 𝑇). Left-deep plan builds the hash tables with 𝑅 and

the output of the join operation. The right-deep plan builds the hash tables with the relations 𝑅 and 𝑇 . It streams 𝑆

and the join output.

Figure 3-19, left (Algorithm 2) describes the execution of the left-deep query plan. We build the

first hash table with the base relation 𝑅. For that, the packet metadata from relation 𝑅 is marked

as build (line 3). We call this hash table 𝑡𝑏𝑙𝑙𝑜 because it is the lowest table in the query plan tree

(line 4). The hash table 𝑡𝑏𝑙𝑙𝑜 is built within the processor stages 1..𝐾, where 𝐾 is a parameter

defined according to the amount of space required. When the packets from relation 𝑅 arrive in

the switch, tuples that find an empty place in 𝑡𝑏𝑙𝑙𝑜 are inserted and their packet are dropped

(lines 4-6). Otherwise, the packets move to the next stage in the collision chain as discussed in

the previous section. The tuples of the relation 𝑆 probe the relation 𝑅 on lines 9-12. Tuples with

a matching key move on in the pipeline building the second hash table and having their packet

dropped (lines 16-21). The second table and the highest one in the query plan tree is called 𝑡𝑏𝑙h𝑖.

Finally, we mark the packets from the last relation 𝑇 only as probe packets (lines 9 and 22). These

tuples probe both hash tables 𝑡𝑏𝑙𝑙𝑜 (lines 9-12) and 𝑡𝑏𝑙h𝑖 (lines 22-26). If a tuple matches its key,

its packet is forwarded to the server (line 25), otherwise it is dropped (line 26).

Figure 3-19, right (Algorithm 3) describes the execution of the right-deep query plan. We assume

the two base tables 𝑅 and 𝑇 have functional dependencies with relation 𝑆. In the algorithm, we

differentiate the packets of the relations by the build and probe metadata fields. We mark

packets of relation 𝑅 only with build, while we mark the packets of relation 𝑆 only with probe.

As in the left-deep algorithm, we call the first hash table 𝑡𝑏𝑙𝑙𝑜 and the second table 𝑡𝑏𝑙h𝑖

representing where they are placed in the query plan tree. The hash tables can be built at the

same time (lines 3 and 9). In case of a matching key, we flip the memorization bit in lines 17 and

19. At the end, we run a special operation in both memorization bits to decide between

forwarding or dropping the packets (lines 20 and 21). Our next steps include a full experimental

validation on those optimization schemes.

D5.2 SmartEdge GA 101092908

58

Figure 3-19: Optimized P4 algorithms for the execution of join-join query plans

3.2.3.4 Integration with Use-Cases
Our runtime optimizer is generic and can be used to optimize a wide range of complex

operations. We illustrate how it integrates with UC2, along with the other component of Task

5.2 described above, in Figure 3-20.

Figure 3-20: integration of the various components described in Task 5.2 with use-case UC2

Several instrumented vehicles (left of the figure) capture local data e.g., through LiDARs. They

stream their data to (one or several) nearby Road Side Units (RSUs) having more computing

capabilities and better connectivity. Some processing takes place at the RSUs, in our example

typically point cloud filtering and processing to extract relevant data from the point cloud data

streamed by the vehicles. The RSUs transmit their processed LiDAR data to a coordinator (which

can run on the RSU also, or on the orchestrator itself depending on its connectivity and

capabilities). The coordinator performs more complex operations on the various data feeds it

D5.2 SmartEdge GA 101092908

59

receives, e.g., performing scene understanding from the processed LiDAR streams. Finally, it

runs a complex query to integrate (i.e., join) the resulting data (taking advantage of our runtime

optimizer to optimize the query, see Declarative Optimization on top of Figure 3-20). It can then

make sensible traffic decisions based on the integrated, high-level semantic data that is

produced from the overall process. Optionally, it can also save part of the semantic model by

efficiently transferring a subset of the results to the cloud (right side of Figure 3-20).

3.3 EMPIRICAL RESULTS AND DEMONSTRATION
We describe below the first results we obtained for the most advanced components described

above in Section 3.2. As our components often include hardware programming, the

implementation efforts involved are substantial and we are still in the process of finalizing

several of them. We will report additional empirical results in D5.3.

3.3.1 Declarative Data Exchange
We started by running several base experiments to verify the viability of our Declarative Data

Exchange stack (see Section 3.2.1 above). In a first experiment, we programmed an FPGA-based

NIC to empirically assess the performance of D-RDMA operations and evaluate its efficiency

under varying transfer sizes. Those experiments were originally reported in [Ryser 22]. We used

a repurposed version of Corundum, a high-performance network card logic that supports several

FPGA-based platforms. The reads were sequential and target a large 1GB memory region. Figure

3-21 shows the results, both in terms of latency and throughput, for DMA operations reading

increasingly large chunks of data from the network card.

Figure 3-21: D-RDMA Latency and bandwidth results of reading increasingly large chunks of data from a network

card.

The throughput results are as expected: the larger the transfer, the better the throughput. To

reach the peak throughput, the operation needs to move at least 256 bytes, which is also the

maximum payload size of the PCIe link. In terms of latency, we note that very small reads can be

higher than that of medium ones. The added latency for larger transfers is due to the transfer of

multiple packets when the maximum payload size of the PCIe link (256 bytes) is reached.

To better understand the transfer performance of non-contiguous regions, we measure the

latency of reading increasingly large chunks of data with different strides. Figure 3-22 shows the

results of this experiment. We observe that for most strides (i.e., more than 8 bytes between

transfers) the latency times remain minimal.

D5.2 SmartEdge GA 101092908

60

Figure 3-22: D-RDMA Latency of reading increasingly large chunks of data with different strides.

3.3.2 Face Blurring

The Face Blurring component is designed to be light-weight, fast and accurate, granting an

accuracy between 0.77 and 0.89. It allows to recognize face of pixel between around 10x10 to

300x300 pixels due to the training scheme and can perform on multiple faces in the same

picture. Performances of the CNN-based face detection method on intel CPU are reported online

(https://github.com/ShiqiYu/libfacedetection).

The algorithm has been tested on images and videos. Preliminary performance results of the

face blur algorithm have been tested using the perf tool available on Linux, and results are

reported below:

Performances for face_blur algorithm tested on an image

FSP 25.7

Time elapsed 0.0675 s

 #

Task-clock 364,47 5.40% CPU utilized

Context-switches 373 1.15 /sec

CPU-migrations 19 45.35 /sec

Page-faults 19210 46.09 /sec

The most recent version is based on YOLO9, which demonstrated equally good performances

for real-time scenarios and allowed for a smoother integration with other algorithms for more

complex applications or processing. The data in the table are median results of five consecutive

tests.

D5.2 SmartEdge GA 101092908

61

The algorithm has then been assessed in a communication scenario, emulating the

cooperation/communication among different edge computing nodes, leveraging RDMA-based

communication for data exchange instead of traditional TCP-based communication. A testbed

encompassing two DELL PowerEdge servers equipped with Bluefield DPU at 25G has been

implemented. Prometheus is used to collect real time metrics on CPU load from both servers

and DPUs.

Results are depicted in Figure 3-23. As expected, the CPU load is significantly lower when using

RDMA compared to TCP, with RDMA requiring nearly half the CPU resources

Figure 3-23: (top) testbed setup for RDMA assessment. (middle) Graphana view of RDMA performance.

(lower left) Performance using traditional TCP data transfer. (lower right) performance using RDMA.

3.3.3 Accelerated Graph Operator

We ran a number of preliminary experiments to show the viability of our P4 offloading technique

for accelerating graph operations. Our setup is as follows: we run our experiments on a cluster

of 16 nodes. Each node contains two sockets, each with an 8-cores 2.1 GHz Intel Xeon CPU E5-

D5.2 SmartEdge GA 101092908

62

2620v4, and a total of 128 GB of main memory. The servers run Ubuntu Linux 22.04.1. The

servers are interconnected through a programmable hardware switch with 100 Gbps ports

based on the Tofino 1 chip. We use Mellanox’s ConnectX-5 100 Gbps network cards on all the

servers.

We use several standard graph datasets in our experiments. The main properties of these graphs

are given in Figure 3-24. We tested our approach on two standard graph operations: listing k-

cliques (where cliques are complete subgraphs of size k) and finding k-motifs (where motifs are

connected patterns of size k).

Figure 3--24: main properties of the standard graphs used for our experiments

The results of our offloading approach are extremely promising: we outperform the state of the

art (Fractal [Dias19]) by more than an order of magnitude (i.e., more than 1000%) on average,

as Figure 3-25 below illustrates.

Figure 3--25: Comparison of running a graph pattern mining task (k-cliques) entirely on nodes (servers) using a state-

of-the-art framework (Fractal [Dias2019]) versus offloading the workload to the switch using our acceleration

approach called GraphINC.

The results on our second task, k-motifs, are impressive as well (see Figure 3-26), as our

approach outperforms the state-of-the-art (Fractal) by more than 80x in the case of k = 3, and

by more than 500% in the case of k = 4.

D5.2 SmartEdge GA 101092908

63

Figure 3-26: Comparison of running a graph pattern mining task (k-motifs) entirely on nodes (servers) using a state-

of-the-art framework (Fractal [Dias2019]) versus offloading the workload to the switch using our acceleration

approach called GraphINC.

D5.2 SmartEdge GA 101092908

64

4 SWARM COORDINATION AND ORCHESTRATION

This section presents ongoing work on the initial implementation of the orchestration, adaptive

coordination, and optimization mechanisms for SmartEdge swarms. The primary focus here is

on our progress within Task T5.3.

The content of this section is organized as follows:

Section 4.1 provides an overview of the main components delivered by Task T5.3 and their

features. It introduces the fundamental principles behind the adaptive coordination and

dynamic orchestration mechanisms applied to SmartEdge swarm intelligence. This section also

examines how components from Task T5.3 integrate with artifacts developed by other tasks and

work packages.

Section 4.2 details the implementations of each component:

Section 4.2.1 presents the finalized architectural design and initial implementation of

the Swarm Adaptive Coordinator artifact (A5.3.1). This artifact enables adaptive

coordination within swarms, allowing them to dynamically adjust their behavior in

response to environmental changes.

Section 4.2.2 describes the final architecture and initial implementation of the Dynamic

Task Orchestration artifact (A5.3.2). This component supports orchestration across the

swarm, enabling efficient task distribution among swarm nodes and coordinating their

collaborative interactions.

Section 4.2.3 reviews the current progress on implementing the Optimizer artifact

(A5.3.3). Designed to enhance swarm efficiency, this artifact optimizes task allocation

and resource usage, further supporting the adaptive capabilities of the SmartEdge

swarm.

Section 4.3 demonstrates the features of the orchestration and coordination mechanisms.

4.1 MAIN COMPONENTS AND FUNCTIONALITIES
Task 5.3 provides SmartEdge swarm intelligence with mechanisms to autonomously form the

swarm, construct processing pipelines, deploy and execute applications, and optimize

performance in response to dynamic changes in swarm context.

In the initial phase, applications are created using the Low-code IDE (A5.4.4), which converts

application logic into processing pipelines composed of interdependent tasks. This pipeline is

structured as a semantic program, implemented through CQELS-RL, as described in Section 5.4.1

of Deliverable D5.1. To deploy and execute applications within the SmartEdge swarm the

semantic program is registered with a designated SmartEdge coordinator. This coordinator

manages the orchestration, task execution, and coordination throughout the swarm.

Figure 4-1 illustrates the architectural layout of the components that facilitate coordination,

orchestration, and optimization within the SmartEdge swarm. On the left side of Figure 4-1, the

architecture of a SmartEdge coordinator node is depicted, while the right side represents a

SmartEdge swarm member node. In the coordinator node, the Orchestrator is responsible for

processing the semantic program, compiling it into executable plans, and directing these plans

D5.2 SmartEdge GA 101092908

65

across a network of SmartEdge nodes. This ensures that tasks are allocated and coordinated

among swarm members, following the specified logic of the application. The Coordinator is

responsible for forming and maintaining the swarm. It keeps track of available nodes, managing

their status and ensuring that all eligible nodes are ready and able to participate in application

execution. The Optimizer continuously monitors the resources and performance of swarm

members to adaptively optimize the execution plan. It ensures efficient resource utilization,

balancing workload across nodes based on their availability and capacity.

Figure 4-1. Overview of the building blocks for adaptive coordination, dynamic orchestration, and optimization

within the SmartEdge swarms.

The functionalities of the components implemented in Task T5.3 are built upon core

components developed in Task T5.4. The communication between components and swarm

nodes is managed by the Message Manager within the SmartEdge Runtime (A5.4.1), which

handles control messages essential for orchestrating tasks across the swarm. The Dynamic

Knowledge Graph (A5.4.2) acts as a contextual knowledge base, storing key information about

the swarm, such as node availability and resource capacity for each node. By providing a shared,

real-time view of the swarm’s status, the DKG enables the Optimizer, Coordinator, and

Orchestrator to dynamically adjust their actions in response to changing conditions, ensuring

efficient and adaptive task management throughout the swarm.

The execution of a semantic program in SmartEdge is a processing pipeline of interconnected

SmartEdge processing primitives (as outlined in Section 5.4.3 of Deliverable 5.1). These

primitives are fundamental operations within the data processing pipeline defined by the

semantic program, assigned to and executed by each member of the swarm. The Primitive

Runtime, which is responsible for executing these primitives, includes three main components:

Subscriber, Primitive Executor, and Publisher. The Subscriber component receives data streams

or updates from other nodes or external sources, serving as the entry point for incoming data

that is subsequently processed according to the application’s requirements. Acting as the core

of the processing pipeline, the Primitive Executor handles the execution of each primitive task,

with oversight by the Task Manager to ensure alignment with the overall execution plan. Once

data processing is complete, the Publisher component sends the results to other nodes or back

to the SmartEdge Coordinator, enabling continuous data flow and collaboration across the

swarm.

Figure 4-2 illustrates a sequence diagram representing the process of registering, compiling, and

assigning tasks within the SmartEdge swarm, where the Orchestrator, Coordinator, and Dynamic

Knowledge Graph (DKG) collaborate to distribute tasks across nodes based on their capabilities.

D5.2 SmartEdge GA 101092908

66

Figure 4-2. Sequence diagram of coordination and orchestration process in the SmartEdge system

The process begins with the Orchestrator registering a program and activating itself to initiate

task management. It then compiles the program and constructs a processing pipeline. Following

this, the Orchestrator identifies the specific skills needed to execute the tasks defined in the

program and sends a request to the Coordinator to obtain a list of nodes capable of performing

these tasks.

The Coordinator updates and maintains the skill list. It constructs a continuous query and

registers it with the DKG to search for and keep updated records of which nodes possess the

required skills and are available. The DKG responds with an updated list of nodes that meet these

criteria. The Coordinator then forwards this list of eligible nodes to the Orchestrator, providing

the necessary information for task allocation.

With the list of available nodes, the Orchestrator builds a detailed execution plan that aligns

tasks with the skills and capacities of each identified node. Finally, the Orchestrator assigns and

D5.2 SmartEdge GA 101092908

67

distributes tasks across the swarm for execution, ensuring that each task is matched to the

nodes best suited to complete it. This coordinated approach optimizes resource usage and

enables efficient, distributed task execution across the SmartEdge swarm.

Changes in the state of the swarm are captured by the DKG, which then updates the query

results and forwards them to the Coordinator. The Coordinator verifies these changes to

determine if the Orchestrator should be notified. If needed, the Orchestrator rebuilds the

execution plan for the processing pipeline based on the updated list of devices and their

capacities.

4.2 COMPONENTS IMPLEMENTATION
This section presents the initial implementation of the Swarm Adaptive Coordinator and Swarm

Dynamic Orchestrator, both developed in Java 11. To process RDF data, we integrate essential

components from the RDF4J library for efficient RDF handling. Additionally, to enable interaction

with the Message Manager implemented in ROS2 Python, we use the JPype library, allowing

seamless communication between Java and Python modules. This setup supports real-time

message exchange and coordination across the SmartEdge swarm.

4.2.1 Swarm Adaptive Coordinator
The formation of a SmartEdge swarm relies on the features of Artifact A4.2 (MS4.2), the Swarm

Coordinator, a networking layer component provided by WP4. When SmartEdge smart nodes

enter the swarm area, they connect to the Wi-Fi network established by the Access Points. Once

connected, each smart node is assigned an IP address, and the Swarm Coordinator adds the

node’s data to the Address Resolution Table, making it discoverable within the swarm and

facilitating the exchange of swarm communication messages. At this stage, the P4 program

operating at the network layer restricts communication to interactions with the Swarm

Coordinator only, preventing direct communication between smart nodes. This controlled

approach ensures that onboarding is secure and that only authorized nodes are integrated into

the swarm. The Swarm Adaptive Coordinator component further supports the ongoing

management of SmartEdge swarm members. Developed as an advanced feature within the

application layer of SmartEdge smart nodes, it enables nodes to function as coordinators,

overseeing the integration and coordination of swarm members and ensuring an efficient,

dynamically adaptable swarm structure.

The discovery and formation mechanisms are based on the semantic descriptions of SmartEdge

nodes and network information stored in the Dynamic Knowledge Graph (DKG). The

coordination process begins with the Orchestrator providing a list of required skills needed to

execute tasks and applications across the swarm. Using this list, the coordination component

identifies and selects suitable SmartEdge nodes by referencing their semantic descriptions in the

DKG. These descriptions offer a contextual understanding of each node’s capabilities, network

status, and operational conditions. This dynamic discovery and formation mechanism enables

the swarm to align its resources efficiently, ensuring that each task is assigned to nodes with the

necessary skills and capacity.

Beyond the initial setup, the Swarm Adaptive Coordination component continuously monitors

the swarm's state, observing changes in the environment and the performance of individual

nodes. This enables the component to anticipate or respond to disruptions and resource

variations. If a node becomes unavailable or if resource demands shift, the coordinator can

reconfigure the swarm in real-time, dynamically reallocating tasks and adjusting network

D5.2 SmartEdge GA 101092908

68

connections as necessary to maintain seamless operation. This proactive management capability

not only improves resilience but also maximizes the efficiency and reliability of the swarm.

The Swarm Adaptive Coordination component’s functionality is further enhanced by a set of

specialized sub-components that address key requirements for swarm formation and

management:

Semantic-based Node Discoverer: This component enables the coordinator to select

nodes based on specific task requirements, utilizing SPARQL queries directed at the DKG

to locate nodes that offer the required skills and capabilities. By returning the

appropriate APIs or protocols for communication, it simplifies node selection and

integration.

P4-based Network Information RDFizer: To facilitate robust communication links

between nodes, this sub-component collects and translates P4-based network

metadata into RDF format, making it accessible through the DKG. By transforming raw

network data into semantic representations, it enables complex analyses and queries

about network status, enhancing the swarm's understanding of its connectivity

landscape.

Semantic-based ROS Communication: This sub-component provides interoperability

with ROS (Robot Operating System) data, utilizing semantic technologies to describe,

annotate, and process ROS topics and messages. By converting ROS messages into RDF

and enabling real-time Graph Stream Processing, it allows the swarm to integrate and

interpret diverse ROS data sources, making them available for collaborative processing

within the SmartEdge framework.

4.2.1.1 Semantic-Based Node Discoverer

The semantic-based node discoverer is a central component of the swarm coordinator,

responsible for dynamically identifying and selecting nodes in the SmartEdge swarm that

possess the required skills for specific tasks. Upon receiving a list of required skills from the

Orchestrator or another component, the semantic-based node discoverer constructs a SPARQL

query to search for nodes that match these requirements. This SPARQL query is then registered

with the Dynamic Knowledge Graph (DKG), which stores semantic descriptions of all nodes in

the swarm, including their capabilities, status, and environmental context.

Figure 4-3. Processing Pipeline for Counting Vehicles in an Observation Zone

For example, to calculate the number of cars within a designated observation zone, as required

in Use Case 2 (UC2), the system employs a processing pipeline as depicted in Figure 4-3. This

pipeline starts by receiving a video stream from a camera positioned to monitor the area. The

video feed is passed to an object tracking task, which typically uses a deep neural network (DNN)

model, such as YOLO or SSD, to track each car as it enters or exits the observation zone. The

RDFizing task follows, converting the tracking data into a structured RDF (Resource Description

Framework) format. This transformation enables seamless integration, querying, and

interpretation of the data across various components of the system. In the final stage, count

D5.2 SmartEdge GA 101092908

69

aggregation is performed through an RDF stream processing task that continuously computes

the aggregate count of cars in real-time. Alternatively, a graph matching pattern can be applied

to analyze the data, as outlined in Deliverable D5.1, Section 5.4.1. Each task in this pipeline is

defined by the Orchestrator and then passed to the Coordinator, which is responsible for

identifying the appropriate SmartEdge nodes capable of fulfilling these tasks.

To identify devices capable of performing a specific task, it is first to define the required skills

for that task. For instance, if the task involves monitoring an option zone, a camera with the

"skill" to observe that zone is needed (Figure 4-4). For object detection tasks, the device must

support deep neural network (DNN) inferencing, which typically requires a GPU or specialized

hardware for efficient processing. In contrast, tasks such as RDFizing (converting data into RDF

format) or count aggregation depend more on standard CPU capabilities, as these tasks leverage

general processing power rather than specialized AI features.

Figure 4-4. JSON-LD of the semantic description for a required skill to observe an option zone.

As an example, Figure 4-4 illustrates a JSON-LD representation of a required skill, "Image

Observer," which enables the observation of a specified option zone. This skill includes the

observes_zone field, outlining the boundaries of the option zone using geo:lat and geo:long

coordinates for each corner (topLeft, topRight, bottomLeft, bottomRight). By utilizing the

SmartEdge data schema and RDF data format to define and standardize device capabilities, this

approach enables efficient task-to-device matching based on both required skills and hardware

specifications.

Figure 4-5 provides a JSON-LD snapshot of a camera located at Junction 266, detailing its

location, video streaming endpoint, and field of view. The camera is modeled as a Thing using

the Web of Things (WoT) ontology. Lines 7 to 16 specify the camera’s metadata, including its

title, unique identifier within the SmartEdge ecosystem (urn:uuid:9489991a-7622-45b6-8437-

f859835d4), and geographical coordinates (geo:lat and geo:long). The video streaming

mechanism is described in lines 12 through 19, where a wot:EventAffordance is used to define

the streaming endpoint. The RTSP URL (RTSP://helsinki.fi/camera/266_1/) and content type

(video/mp4) are specified, enabling direct access to the camera’s live feed. Lines 17 to 27

describe the camera’s skill, Image Observer, which is modeled as a subclass of the smart-

edge:Skill ontology. This skill includes the camera’s field of view, represented as a smart-

D5.2 SmartEdge GA 101092908

70

edge:Area with a unique identifier (fov_id: cam_266_1). The field of view is further defined with

specific boundary coordinates (topLeft, topRight, bottomLeft, bottomRight) using geospatial

properties (geo:lat and geo:long) to delineate the area monitored by the camera. This JSON-LD

structure integrates the WoT and SmartEdge ontologies, providing a semantically rich and

interoperable representation. It enables precise context definition, facilitating effective task

coordination and enhancing functionality within the SmartEdge ecosystem.

Figure 4-5. JSON-LD Snapshot of Semantic description for a camera at Junction 270, Helsinki

To identify the appropriate camera, the device must provide images of the option zone, meaning

we need a camera with a field of view that overlaps with the option zone’s coordinates. This

process involves querying for cameras whose field of view intersects with the specified option

zone. The SPARQL query shown in Figure 4-6 demonstrates how to retrieve cameras meeting

these criteria by matching their field of view with the option zone’s boundaries.

D5.2 SmartEdge GA 101092908

71

Figure 4-6. JSON-LD Snapshot of Semantic description for a camera at Junction 270, Helsinki

To generate the SPARQL queries, a query template is defined for each required skill. These

queries are then subscribed to the Dynamic Knowledge Graph (DKG) to listen for updates. Each

skill maintains its own list of suitable nodes discovered from the DKG, and each list is assigned

to a corresponding skill. The lists are organized by relevant categories, ensuring that the most

capable devices are prioritized.

For example, for cameras, the list is sorted by Intersection over Union (IoU), prioritizing those

with the highest overlap with the option zone. For nodes that handle tasks like object detection,

the list is sorted based on available CPU and GPU resources, with nodes offering higher available

resources ranked at the top.

When there is a change in the swarm's state, such as a device nearing battery depletion or a

camera going offline due to environmental factors like strong winds, the DKG detects these

updates and sends the new information back to the Coordinator. The Coordinator then updates

the lists, accordingly, identifying devices at high risk of becoming unavailable by observing those

that fall toward the bottom of the list. If a device’s risk level exceeds a certain threshold, the

Coordinator alerts the Orchestrator, allowing it to adjust the task assignments or reconfigure

the swarm as needed to maintain optimal performance and stability.

D5.2 SmartEdge GA 101092908

72

This artifact is built upon the Recipe model described in Work Package 3 (WP3). Moving forward,

we maintain alignment with the template specifications and track updates to the Recipe model

in WP3 to ensure compatibility and improvements in functionality. Additionally, we will explore

criteria for detecting node failure, allowing for more proactive management within the swarm.

This includes identifying specific signals that indicate a node's reduced functionality or risk of

failure, such as low battery levels, connectivity issues, or hardware malfunctions.

4.2.1.1.1 P4-based network information RDFizer

To help the Coordinator understand the network context, this sub-component collects and

translates P4-based network metadata into RDF format, making it accessible via the Dynamic

Knowledge Graph (DKG). By converting raw network data into semantic representations, it

enables advanced analyses and complex queries about network status, improving the swarm's

awareness of its connectivity landscape. For instance, which connections can provide bandwidth

up to 10 MB per second.

Figure 4-7. Overview of the integration DKG with ONOS control plan

We adopt the Software-Defined Networking (SDN) approach, with ONOS (Open Network

Operating System) serving as the control plane implementation. The data plane can be

implemented using P4, ensuring compatibility with P4 devices in the SmartEdge project. Figure

4-7 illustrates how the Distributed Knowledge Graph (DKG) mechanism integrates into a

traditional ONOS-based SDN controller:

• Southbound API: Enables communication between the ONOS controller and data plane

devices using protocols like P4 Runtime.

• ONOS Distributed Core: The dynamic knowledge graph integrates with the distributed

core, facilitating the storage and management of semantic annotations for network

state information.

• Northbound API: Provides interfaces for network-control applications to interact with

the controller, leveraging DKG insights for tasks like dynamic routing, access control, and

D5.2 SmartEdge GA 101092908

73

load balancing. Applications can query and update states using the knowledge base,

enabling adaptive and informed network management.

The workflow of integrating ONOS with components such as the ONOS controller and P4-

enabled devices in the data plane is illustrated in Figure 4-8. Key components include the

knowledge generator (referred to as the RDFizer), the dynamic knowledge graph (DKG), and its

SPARQL engine. The ONOS controller interacts with real-time data sources in the data plane,

including packets and P4Runtime control entities. This data is abstracted into Plain Old Java

Objects (POJOs) by the controller. The RDFizer then transforms these POJOs into semantically

uniform Resource Description Framework (RDF) structures, ensuring consistent and

standardized data representation for reasoning and decision-making processes. This RDF-based

approach introduces an innovative method for managing network data and leveraging it for

higher-level applications.

Figure 4-8. Overview of the workflow of P4-based RDFizer

This module is planned for the second release. At the current stage, we have successfully

extracted P4-based metadata from packets traversing the network using P4. Figure 4-9

showcases the RDF-annotated P4-based metadata within the ONOS environment. The testing

was conducted on a simulated network using Mininet, and the codebase is accessible in the

GitLab repository of the SmartEdge project. The next step involves integrating these

components into the SmartEdge runtime instance, establishing communication with the DKG via

the DDS protocol.

D5.2 SmartEdge GA 101092908

74

Figure 4-9. Screen shot of RDF annotation of P4-based metadata on MiniNet.

4.2.2 Swarm Dynamic Orchestrator

The Swarm Dynamic Orchestrator manages the collaborative actions of SmartEdge nodes within

a SmartEdge swarm, orchestrating tasks and linking nodes to create a processing pipeline. In the

SmartEdge toolchains, a declarative programming approach is used, where each application is

represented as a Semantic Program (detailed in Section 5.4 of Deliverable 5.1). Upon receiving

a Semantic Program, the Orchestrator decomposes it into sub-tasks to construct a federated

execution plan. This plan links specific data sources to processing operators and defines where

processed data should be routed. Additionally, the Orchestrator adapts dynamically to changes

in the swarm environment. If a single node lacks sufficient computational resources to handle a

complete task, the Orchestrator partitions the task into smaller segments (when feasible) and

distributes them across other capable nodes within the swarm. This adaptive strategy ensures

efficient utilization of resources and robust task execution across the SmartEdge network.

4.2.2.1 Semantic Program Parser

The execution of a semantic program begins by parsing it into a structured data representation

that encapsulates all the operators, and their relationships defined in the program. In the initial

implementation, the Orchestrator is designed to parse and process key elements of a semantic

program, including data input sources, data outputs, and essential operations for processing

semantic data (RDF), such as sub graph matching, aggregation, and filtering.

The parser is developed by extending the SPARQL parser from the RDF4J library. Since CQELS

extends the SPARQL syntax by introducing keywords like STREAM and WINDOWS for processing

streaming data, these additions enable the parser to handle window operations seamlessly.

Existing implementations for parsing RDF nodes, aggregation functions, and other SPARQL

elements are reused to maintain efficiency and consistency. To support the extended syntax,

the underlying JavaCC grammar files from RDF4J are extended to include the CQELS-specific

keywords. These extended grammar files are processed through the same compilation pipeline

to generate essential components for the parser, such as a Lexer and token recognizer.

In its current version, the Orchestrator can process semantic programs for specific use cases,

such as counting all vehicles at a junction. This capability demonstrates the initial functionality

D5.2 SmartEdge GA 101092908

75

of the system, laying the foundation for more complex stream processing operations in future

iterations.

4.2.2.2 Task Skill Mapper

Before constructing an execution plan for a semantic program, the system must first identify the

specific operations required to execute the program. This process is conceptually similar to how

a database management system processes a query. In such systems, the query is parsed into a

structured format, and then a logical query plan is generated. Similarly, in the SmartEdge

runtime, the parsed semantic program serves as the foundation for building a logical query plan.

This component is integral to the workflow, as it parses the semantic program and generates a

logical query plan that organizes the required operations into a sequence of interconnected

operators. The logical query plan acts as a blueprint, detailing how data flows between operators

and how tasks are to be executed. Each operator in the plan represents a discrete computational

task, such as filtering, aggregation, or stream processing.

For each operator in the logical query plan, the system generates a detailed specification of the

computational requirements needed to execute it. This specification includes the skills required

for the operator, such as the ability to perform deep learning inference, graph processing, or

basic data transformations. Additionally, the system identifies the hardware resources needed,

such as CPU, GPU, memory, or specific software libraries, to ensure optimal execution.

Once the skill requirements for the operators are identified, the Task Skill Mapper sends the

compiled list of required skills to the Coordinator. The Coordinator queries the available

SmartEdge nodes to find devices capable of fulfilling the specified skill requirements. This

interaction involves using the Dynamic Knowledge Graph (DKG) to retrieve information about

each node's current state, capabilities, and resources.

The Coordinator returns a list of devices that match the required skills and are available for task

execution. The Execution Plan Builder then use this information to map each operator in the

logical query plan to specific devices within the swarm. By ensuring that tasks are assigned to

nodes capable of executing them efficiently, this process enables distributed, optimized

execution of the semantic program across the SmartEdge ecosystem.

4.2.2.3 Execution Plan Builder
The Execution Plan Builder is the final stage in the task orchestration process, where the system

translates the logical query plan and device capabilities into a concrete execution plan. This

component assigns tasks to specific devices within the swarm and establishes the necessary links

between devices to create a complete processing pipeline. The resulting execution plan ensures

that tasks are distributed efficiently and data flows seamlessly across the SmartEdge swarm.

The Execution Plan Builder starts by receiving the logical query plan, which contains a detailed

representation of the operators and their interconnections. For each operator in the plan, the

required skills and resources (e.g., computational power, memory, GPU availability) are matched

against the list of available devices provided by the Coordinator.

Using the skill-to-device mapping generated by the Task Skill Mapper, the Execution Plan Builder

assigns each operator to a specific device. For example, a deep learning inference task may be

assigned to a device with a GPU and DNN capabilities, while a simpler data filtering task may be

allocated to a device with basic CPU resources.

D5.2 SmartEdge GA 101092908

76

The Execution Plan Builder accounts for real-time changes in the swarm environment, such as

devices becoming unavailable or experiencing resource constraints. If a device is no longer

suitable for a task, the plan is dynamically adjusted by reassigning the task to an alternative

device. This adaptability ensures resilience and continuity in task execution.

Figure 4-10. Example of an execution plan generated by the Orchestrator in JSON format.

For example, consider a processing pipeline involving object tracking, RDFizing, and RDF Stream

Processing (RSP) (Figure 4-10). The pipeline begins with a device, such as jetson_01, performing

object tracking using the Yolov8 model on a live video feed from a camera endpoint

(RTSP://helsinki.fi/camera/266_1/). The tracking results are then converted into RDF format

(RDFizing) on the same device. These RDFized results are passed to another device, such as

raspberry_pi4_01, which processes the data using RDF Stream Processing to execute a query

and aggregates the results. The Execution Plan Builder maps each operation to the appropriate

device by evaluating the computational requirements of tasks (e.g., GPU-intensive object

tracking vs. lightweight RSP queries) and the devices' available capabilities. It also defines the

D5.2 SmartEdge GA 101092908

77

communication protocols and endpoints, such as RTSP for video feeds and DDS for inter-device

communication, ensuring seamless data flow across the pipeline. By dynamically adjusting to

the swarm's state and monitoring device performance, the Execution Plan Builder maintains

optimal resource utilization and robust task execution, even in dynamic environments. This

modular approach allows for scalable, efficient, and resilient distributed task management

within the SmartEdge system.

4.2.3 Swarm Optimizer
This component empowers SmartEdge smart nodes to enhance their performance by

dynamically adjusting runtime parameters within the SmartEdge Runtime hosted on each node.

The Optimizer evaluates resource utilization and workload efficiency, providing

recommendations to Coordinators about task distribution. For example, it can determine

whether a task currently running on a node should be offloaded to a more capable node, such

as one with higher computational power or access to cloud infrastructure, ensuring optimal

resource usage across the swarm.

The Optimizer plays a pivotal role in enabling intelligent decision-making within the SmartEdge

ecosystem. By analyzing the computational demands of tasks and the resource constraints of

nodes, it helps maintain balance and responsiveness in the swarm. This capability is particularly

critical for scenarios involving resource-intensive tasks like deep learning inference, where

efficient allocation can significantly impact performance and energy consumption.

The development of this component is planned as part of the SmartEdge Solution 2 release, with

the current implementation in its initial stages. At this stage, the foundational mechanisms for

runtime parameter tuning and basic task distribution are being established. The corresponding

use case for testing and validating the Optimizer is under development as part of Task T5.3.

Future iterations aim to fully integrate the Optimizer with the SmartEdge Coordinator and

Dynamic Knowledge Graph (DKG) for real-time monitoring and adaptive task allocation within

the swarm.

4.3 EMPIRICAL RESULTS AND DEMONSTRATIONS
This section provides a detailed overview of the demonstration of the Swarm Orchestrator and

Coordinator in two use cases: UC2 - counting vehicles at junction 266 and UC3 - collaborative

observation in a smart factory environment. These demonstrations emphasize the system's

capability to handle node discovery and task distribution across the SmartEdge swarm.

For UC2, the demonstration involves deploying a processing pipeline to count vehicles passing

through a designated observation zone. The pipeline comprises tasks such as object tracking,

RDFizing, and count aggregation, which are distributed across multiple SmartEdge devices. The

Swarm Orchestrator processes a semantic program to generate an execution plan, while the

Coordinator ensures that tasks are assigned to suitable devices based on their capabilities and

resource availability.

For UC3, the demonstration features a ground vehicle robot equipped with an Intel RealSense

D435i camera. As the robot navigates through the operational area, it builds a 2D occupancy

map using RTAB-Map (Real-Time Appearance-Based Mapping) and simultaneously performs

real-time object detection and segmentation with a YOLO model. All components, including the

map-building and object detection algorithms, are implemented as ROS2 (Robot Operating

D5.2 SmartEdge GA 101092908

78

System 2) nodes. This pipeline represents a "Primitive Runtime" within the SmartEdge Runtime

system, with the robot acting as a smart node in the SmartEdge swarm. The demonstration

showcases how mobile robots can achieve real-time mapping and scene understanding,

enhancing navigation and operational efficiency in a smart factory environment.

These use cases demonstrate the collaborative and adaptive capabilities of the Swarm

Orchestrator and Coordinator in managing distributed tasks across a heterogeneous network of

SmartEdge devices. The demonstrations underline the scalability, robustness, and versatility of

the system in handling complex workflows in dynamic edge environments.

4.3.1 Object tracking and counting demo of UC2

As a part of implementation of Use Case 2, this demo demonstrates the SmartEdge system's

ability to process real-time video streams from a camera monitoring a junction and count the

number of vehicles passing through (Figure 4-11). This use case utilizes specific components of

the SmartEdge toolchain:

• Semantic Programs: Define the workflow for vehicle counting, detailing the tasks and data

flows required for execution.

• Swarm Coordinator: Identifies and manages SmartEdge nodes, ensuring that resources are

allocated based on task requirements.

• Swarm Orchestrator: Distributes and executes tasks across the swarm nodes, managing

their execution order and resource utilization.

• Dynamic Knowledge Graph (DKG): Tracks the real-time state of nodes and tasks, enabling

efficient coordination and task updates.

Figure 4-11. Working Pipeline

In this demonstration, SmartEdge components will be deployed on a Jetson Nano, while another

PC will be used to send task requests. Both devices are connected to the same local network. To

launch a SmartEdge swarm node, a single command is required: ̀ ./smartedge_launch.sh 1 nano

true true`. In this command, 1 specifies the swarm node ID, nano indicates deployment on a

Jetson Nano device, the first true denotes that this is a swarm node with both the coordinator

and orchestrator, and the second true enables debug mode. Once the command is executed,

two Docker containers will be built, and the ROS2 nodes will start running (as shown in Figure

4-12).

D5.2 SmartEdge GA 101092908

79

Figure 4-12. Building process of the swarm node

Figure 4-13. The PC can only discover the intra-message manager ROS2 node

On the PC, only the intra-message manager ROS2 node, located in the intra-communication

Docker container on the Jetson Nano, is visible. Conversely, on swarm node 1, all ROS2 nodes

and services are discoverable (as shown in Figure 4-13 and Figure 4-14).

D5.2 SmartEdge GA 101092908

80

Figure 4-14. On the Jetson Nano, all the ROS2 nodes are discoverable

Now, let’s call the /node_1_intra_msg_service to initiate the task using the following

command in Figure 4-15:

Figure 4-15. Sample service request of initializing a task

Upon execution, the response will be received as follows (Figure 4-16):

Figure 4-16. Example of a service response after initializing a task

D5.2 SmartEdge GA 101092908

81

We will observe a new Docker container: " primitive_task_1", being built and running (as

shown in Figure 4-17). This primitive container publishes object detection data to the topic

"/node01", making it accessible externally. For example, the PC can discover this topic and

subscribe to it to receive the resulting bounding box data (as shown in Figure 4-18).

Figure 4-17. Docker container list after distributing the task

Figure 4-18. Object detection results subscribed from the ROS2 topic ‘/node01’

To terminate the task, simply call the "/node_1_intra_msg_service" again using the following

command (as shown in Figure 4-19):

Figure 4-19. Example of a service request to stop a task

This will return the response: "primitives are stopped." In the running log of swarm node 1, the

task termination procedure will be visible, showing that the primitive container is deleted at the

end of the process (as shown in Figure 4-20). Verifying with "docker ps" will confirm that the

"primitive_task_1" container has indeed been removed (as shown in Figure 4-21).

D5.2 SmartEdge GA 101092908

82

Figure 4-20. Logs for terminating a task

Figure 4-21. Docker container list after terminating the task

Figure 4-22 shows the detection and counting of vehicle results being visualized.

Figure 4-22. Demonstration of Detection and Counting Visualized at Conveqs Junction 266, Helsinki, Finland

4.3.2 Demonstration Semantic SLAM map builder of UC3

In this demo, we have implemented key components of Smart Factory Use Case 3 by deploying

a ground vehicle robot (as shown in Figure 4-23) equipped with an Intel RealSense D435i camera.

The robot navigates through the operational area while simultaneously building a 2D occupancy

map using RTAB-Map (Real-Time Appearance-Based Mapping) and performing real-time object

detection and segmentation using YOLO model. All components, including the map builder and

object detection algorithms, are implemented as ROS2 (Robot Operating System 2) nodes. This

setup demonstrates how mobile robots can achieve real-time mapping and scene

understanding, enhancing navigation and operational efficiency in a smart factory environment.

This pipeline is a "Primitive Runtime" within the SmartEdge Runtime pipeline. The ground

vehicle robot is a smart-node in the SmartEdge swarm, executing the tasks above.

D5.2 SmartEdge GA 101092908

83

Figure 4-23. Ground vehicle robots equip with sensors.

4.3.2.1 Working Pipeline

• Application Creation: The application logic for mapping and object detection is defined

and converted into a semantic program (processing pipeline).

• Program Registration and Compilation:

o The semantic program is registered with the SmartEdge Coordinator.

o The Orchestrator compiles the program into an executable plan, identifying

required tasks and associated skills.

• Node Discovery and Task Assignment:

o The Coordinator queries the DKG to find nodes with the necessary skills (e.g.,

SLAM, object detection).

o The robot is identified as a capable node, and tasks are assigned accordingly.

• Primitive Runtime Execution:

The robot's Primitive Runtime components execute the assigned tasks:

o Subscriber:

D5.2 SmartEdge GA 101092908

84

▪ The robot's sensors, including the Intel RealSense D435i camera, act as

data generator by capturing RGB images, depth data and IMU from the

environment.

▪ These data streams subscribed by this Subscriber then serve as the

input for processing tasks within the robot's Primitive Runtime.

o Primitive Executor:

▪ The SLAM map builder using RTAB-Map and the object detection and

segmentation using YOLO are implemented as Primitive Executors.

▪ These executors process incoming data to generate a 2D occupancy

map and identify objects with bounding boxes and segmentation

masks.

o Publisher:

▪ Processed outputs, such as the occupancy map and object detection

results, are published to specific topics within the swarm.

▪ Other smart-nodes can subscribe to these topics, enabling data sharing

and collaborative processing across the swarm.

4.3.2.2 Experiment and Demonstration

Figure 4-24. The Actual Floor Plan

This demonstration showcases the advanced capabilities of a ground vehicle robot equipped

with the Intel RealSense D435i camera, running SmartEdge Runtime to generate a SLAM map

and achieve environmental understanding. Starting in Room 4 (as the actual floor plan shown in

Figure 4-24), the robot navigates outward into the hallway, then progresses through a long

hallway, and dynamically generates a detailed 2D occupancy map of its surroundings (as shown

D5.2 SmartEdge GA 101092908

85

in Figure 4-26). The system concurrently performs semantic segmentation (as shown in Figure

4-25), providing rich contextual labels for each detected area.

Figure 4-25. Semantic Segmentation

Figure 4-26. Part of a 2D occupancy map generated by a robot moving from Room 4 toward the long hallway.

D5.2 SmartEdge GA 101092908

86

5 CROSS-LAYER TOOL CHAIN FOR DEVICE-EDGE-CLOUD

CONTINUUM

5.1 MAIN COMPONENTS AND FUNCTIONALITIES
Figure 5-1 illustrates the architecture of the SmartEdge toolchain, a cross-layer framework

designed to support the development, deployment, and execution of distributed applications

across the Device-Edge-Cloud Continuum. The toolchain consists of interconnected modules

that enable low-code application creation, dynamic task allocation, and optimized runtime

execution across heterogeneous devices. It bridges the gap between edge nodes and cloud

resources, ensuring seamless operation and scalability within a distributed environment.

Figure 5-1. Overview of the design and initial implementation of the SmartEdge toolchain.

At the top layer, the Low-Code IDE (A5.4.4) handles the creation and specification of SmartEdge

applications, offering a user-friendly interface that allows developers to design applications

using low-code development techniques. By abstracting underlying complexities, the IDE

enables users to visually create applications without extensive coding. Within this interface,

developers specify application requirements and logic, which are then processed by the

D5.2 SmartEdge GA 101092908

87

semantic program generator. This generator translates the application logic into a structured

semantic program, creating a processing pipeline of interdependent tasks that is ready for

execution within the SmartEdge system.

The Swarm Coordination (A5.3.1) and Task Orchestration (A5.3.2) layer includes modules for

task distribution, coordination, and optimization across the swarm of devices. The Swarm

Optimizer (A5.3.3) continuously monitors resource availability and workload distribution,

optimizing task allocation to ensure efficient resource utilization. By balancing workloads based

on each node's current capacity, the optimizer enhances performance and responsiveness. Task

Orchestration manages the execution sequence of tasks, ensuring that tasks are distributed and

processed according to the semantic program’s specified logic. Adaptive Coordination

dynamically forms and maintains the swarm, monitoring available nodes, assessing their status,

and ensuring that only suitable nodes are used for task execution. This module adjusts the

swarm composition in response to real-time conditions, allowing for continuous adaptation.

The Dynamic Knowledge Graph (DKG) (A5.4.2) functions as a contextual knowledge base, storing

real-time information on node availability, resources, and task requirements. Serving as a shared

repository, it enables the Optimizer, Coordinator, and Orchestrator to make informed, data-

driven adjustments based on the current state of the swarm.

Additionally, various plugins are being implemented to extend SmartEdge's functionalities,

supporting integration with external systems and frameworks such as machine learning libraries

and network management tools. These plugins enhance the toolchain’s adaptability, allowing it

to meet specific application requirements more effectively.

The SmartEdge Network layer (developed in WP4) underpins communication and data exchange

among swarm nodes, facilitating reliable connectivity for task coordination, data sharing, and

control messaging.

The SmartEdge Runtime and Hardware Abstraction layer focuses on providing an efficient

runtime environment for diverse devices. The SmartEdge Runtime executes tasks across swarm

nodes, leveraging processing primitives designed for specific computation types:

• Stream Fusion Primitives: Combine data from multiple sources, such as video, audio, or

sensor feeds.

• Graph Stream Processing Primitives: Handle graph-based data streams, supporting the

processing of complex data structures.

This layer also includes components for hardware abstraction, enabling tasks to run on various

devices within the swarm. Support for heterogeneous hardware (e.g., LLVM, CUDA, METAL)

allows SmartEdge to execute tasks on GPUs and specialized processors across platforms,

including NVIDIA and Apple devices.

Overall, the SmartEdge toolchain integrates a low-code development environment, adaptive

task management, and optimized runtime execution on diverse edge devices. This architecture

supports flexible, scalable, and resilient application deployment, making it ideal for real-time,

data-intensive applications in dynamic environments where resources and device capabilities

vary.

D5.2 SmartEdge GA 101092908

88

5.2 COMPONENTS IMPLEMENTATIONS

5.2.1 SmartEdge Runtime

The SmartEdge Runtime enables the execution of semantic programs by managing data inputs,

outputs, and the runtime processing of SmartEdge primitives. These primitives include core

operations such as data fusion, stream queries, and tensor computations, as outlined in Section

5.4.3 of Deliverable D5.1. To enhance functionality and optimize performance, the runtime

supports plugin integration, such as the Runtime (A5.4.1), which augments network capabilities

for efficient task execution.

As depicted in Figure 4-1 (Section 4.1), the SmartEdge Runtime is composed of four primary

components:

• Message Manager: Handles control communication between SmartEdge nodes,

ensuring seamless coordination.

• Dynamic Knowledge Graph (DKG): Maintains metadata and contextual information

about nodes and the swarm for dynamic decision-making.

• Task Manager: Oversees resource allocation, manages task distribution, and executes

operations through the Primitive Runtime.

• Primitive Runtime: Executes the specific primitives defined in semantic programs,

enabling distributed processing.

These components collectively ensure efficient task execution and robust coordination across

the SmartEdge system.

5.2.1.1 Message Manager
To implement the Message Manager, we utilize ROS2, a middleware framework based on the

Data Distribution Service (DDS) standard. The design rationale for choosing ROS2 is its ability to

enable each component of the system to operate as an independent ROS node. These nodes

can run on the same device or across multiple devices, communicating seamlessly via ROS2's

DDS-based communication mechanism. This approach ensures modularity and flexibility, as

each component can function independently while remaining part of a larger interconnected

system.

One of the key advantages of using ROS2 is its Intra-process Communication (IPC) mechanism,

which allows ROS nodes running on the same device to pass messages as efficiently as reading

from a shared memory buffer. This could avoid unnecessary latency for on-device

communication.

Another benefit of ROS2 is its wide support across SmartEdge UC devices, making it a natural

choice for implementation. Moreover, to accommodate integration with other communication

protocols, we can incorporate Zenoh, a DDS-based middleware that serves as a bridge between

diverse communication protocols. Zenoh enables the system to interoperate with non-DDS-

based components, further extending the flexibility and scalability of the SmartEdge system.

D5.2 SmartEdge GA 101092908

89

Figure 5-2. Overview of architecture of the Message Manager

Figure 5-2 illustrates the architecture of the Message Manager, divided into on-device

communication components and on-network communication components, each responsible for

facilitating communication either within the components on the same node or across multiple

nodes:

• Red Boxes: Represent Docker containers, which encapsulate ROS nodes and related

services.

• Blue Boxes: Represent ROS nodes responsible for handling message routing.

• Green Boxes: Represent ROS services and clients dedicated to on-device

communication.

• Orange Boxes: Represent ROS services and clients facilitating on-network

communication.

• Purple Boxes: Represent the Zenoh bridge, which enables integration with external

devices or protocols outside of ROS2.

Control messages received from the on-network communication components are routed to the

appropriate on-device components for further processing.

The messages are organized using the following ROS syntax:

• string requester: Specifies the ID of the node initiating the request.

• string request_type: Defines the category or type of the request.

• string request_description: Provides a detailed explanation of the request, including any

necessary parameters or context in JSON format.

• string response: Contains the response to the request, which may include results,

acknowledgments, or error messages.

The request_type field in the message syntax identifies the component or service that should

handle the request. This allows messages to be routed within the system. The following table

provides details about the currently defined request types:

D5.2 SmartEdge GA 101092908

90

Figure 5-3. Table of request type supported in the current implementation.

An example of the message can be found in the demonstration described in Section 4.3, with

additional details provided in the README file available in our GitLab repository.

5.2.1.2 Dynamic Knowledge Graph

The Dynamic Knowledge Graph (DKG) functions as a central repository and query engine for

managing metadata, task states, and contextual information within the SmartEdge ecosystem.

Its primary purpose is to enable seamless interaction between SmartEdge nodes by providing

real-time updates and supporting both static and dynamic queries. This section outlines the

DKG's implementation, covering its integration with existing RDF frameworks, query capabilities,

APIs, and message routing mechanisms.

The current version of the DKG operates in embedded mode, allowing deployment on any

SmartEdge smart node that supports the Java Virtual Machine (JVM). This design ensures

compatibility across diverse devices within the SmartEdge ecosystem. Implemented in Java, the

DKG integrates with ROS2 using JPype to facilitate communication with other components in

the system, which predominantly rely on ROS2 Python. JPype acts as a bridge, enabling seamless

interaction between the Java-based DKG and ROS Python nodes, allowing for the exchange of

queries, responses, and real-time updates.

The DKG supports two query types: One-Shot Queries and Continuous Queries. One-shot queries

execute a single SPARQL query to retrieve specific information, such as the current state of a

node or resource availability in the swarm. Continuous queries, on the other hand, register

monitoring tasks within the knowledge graph to provide real-time updates to applications. For

instance, a continuous query can track the availability of nodes with specific skills and notify

relevant components when changes occur.

To manage RDF data and execute SPARQL queries, the DKG uses the RDF4J framework, a robust

and feature-rich library. For storage, it employs the RDF4Led approach, a lightweight RDF

storage solution optimized for resource-constrained edge devices, ensuring efficient data

handling even in limited environments. Furthermore, the DKG leverages the CQELS codebase to

extend SPARQL querying capabilities for continuous queries, allowing it to monitor real-time

data streams and dynamically notify subscribers of updates.

D5.2 SmartEdge GA 101092908

91

To interact with the DKG, messages are structured as follows:

The DKG provides a set of APIs to interact with the knowledge graph. These APIs facilitate data

insertion, deletion, querying, and registration of continuous queries. Key API functions include:

• Insert: Add new RDF triples to the knowledge graph.

• Delete: Remove specific RDF triples from the knowledge graph.

• Query: Execute a one-shot SPARQL query.

• Register Query: Register a continuous query and receive updates when changes

occur.

D5.2 SmartEdge GA 101092908

92

5.2.1.3 Task Manager
The Task Manager is a core component of the SmartEdge runtime, responsible for managing and

coordinating tasks assigned by the Orchestrator on a SmartEdge smart node. Each task involves

executing a pre-packaged SmartEdge Primitive, which encapsulates a specific computational

operation or function required to achieve the task's objectives. These primitives are executed

within the Primitive Runtime, a flexible containerized environment that is dynamically

provisioned to execute the primitive.

The Task Manager handles the lifecycle of the Primitive Runtime, including initialization,

execution, and termination. During initialization, it ensures resources, configurations, and

dependencies are in place for successful execution. During execution, the Task Manager

monitors performance and ensures operations meet requirements. After task completion or

when no longer needed, the Task Manager terminates the Primitive Runtime, freeing resources

to maintain system efficiency.

The Task Manager is implemented as a ROS2 node in Python and utilizes the Docker library to

manage Docker containers that host primitives. It maintains a mapping of tasks to their

corresponding Docker containers, enabling efficient tracking and management of tasks

throughout their lifecycle. This mapping simplifies operations such as starting, monitoring, and

terminating tasks while ensuring optimal resource utilization.

The Task Manager provides a ROS2 service for on-device communication, named

“node_<node_id>_task_manager”, where “<node_id>” represents the swarm ID of the node.

For instance, in the demo discussed in Section 4.3, the service name is “node_1_task_manager”.

When the on-device message manager receives a primitive message, it creates a Task Manager

service client to call the service, either to execute or terminate the primitive(s). To call the Task

Manager service, the client must send a request with the following four fields:

• action: An integer value of 1 or 0, indicating whether the Task Manager should execute

(1) or terminate (0) the specified primitive.

• task_id: A string representing the unique task ID to which the primitive belongs. Note

that a single task may consist of multiple primitives.

• primitive_id: A string representing the unique ID of the primitive.

• task_description: A JSON-encoded string describing the primitive, which contains the

following sub-fields:

o inputStream: Specifies the endpoint and protocol for the input data stream that

the primitive will subscribe to.

o primitive: Describes the operation and model to be used in the primitive

execution.

o outputStream: Specifies the endpoint and protocol for the output data stream

that the primitive will publish to.

D5.2 SmartEdge GA 101092908

93

Figure 5-4. An example of a Task Manager service request

When a task is requested to start, the Task Manager follows a structured workflow to ensure

efficient execution. First, it checks whether a Docker image for the task already exists. If the

image is available, the Task Manager directly creates a container from it. If no pre-existing image

is found, the Task Manager dynamically generates a Dockerfile based on the task description.

This process includes selecting a base image that aligns with the task's requirements, such as

compatibility with ROS2 or specific operating system configurations, specifying the required

libraries and dependencies, and defining the input and output streams' protocols and endpoints.

Once the Dockerfile is generated, the Task Manager builds the Docker image and creates a

container to execute the task. The Task Manager tracks details such as the task ID, primitive ID,

Docker image ID, and Docker container ID, maintaining an updated mapping between them to

streamline lifecycle tracking and management.

When a request to stop a task is received, the Task Manager efficiently handles the termination

process. It identifies the associated container using the task-to-container mapping, stops the

container, and removes it to free up system resources. The mapping is then updated to reflect

the task's completion and removal from the system.

Once the Task Manager completes the execution or termination of a primitive, it responds to

the service client with two fields: a code and a message, both as strings. The code reflects the

Task Manager's status for the request and is categorized into three types: success, failure, and

warning.

By managing task initialization, execution, and termination within Docker containers, the Task

Manager ensures robust and efficient task management, meeting the dynamic and distributed

demands of the SmartEdge ecosystem. This modular, containerized approach enhances

scalability, portability, and overall system performance, enabling seamless operation across

heterogeneous environments.

D5.2 SmartEdge GA 101092908

94

5.2.1.4 Primitive Runtime
The Primitive Runtime is a core component of the SmartEdge Runtime, responsible for executing

task primitives on SmartEdge smart nodes. Primitives represent the essential building blocks of

the system's computational capabilities, each performing a specific operation critical to the

execution of distributed tasks within the device-edge-cloud continuum. These operations

include, but are not limited to, object detection, object tracking, and graph stream processing,

addressing a wide range of application requirements.

 For instance, in the context of a smart factory use case, an object detection primitive might

analyze real-time video streams to identify and classify objects within a production area.

Similarly, an object tracking primitive could monitor the movement of identified objects across

frames, providing insights into dynamic processes. For applications involving complex data

relationships, a graph stream processing primitive might handle tasks like matching patterns or

aggregating information in real-time.

The Primitive Runtime ensures efficient execution of these operations by leveraging available

hardware resources on SmartEdge nodes, such as CPUs, GPUs, or accelerators. It isolates each

primitive within a controlled environment, often utilizing containerized deployments, to prevent

conflicts and optimize resource utilization. This modular design allows the Primitive Runtime to

adapt to the heterogeneous capabilities of edge devices while maintaining high performance

and scalability. Through its ability to execute diverse primitives, the Primitive Runtime

empowers the SmartEdge system to meet the computational demands of various applications

in real-time distributed environments.

3

Figure 5-4. Primitive Runtime

When a task is assigned, the Task Manager establishes a Docker containerized environment to

serve as the execution platform for the Primitive Runtime. The configuration of this container

depends on the task requirements. it may be isolated for internal communication or configured

for external access. The container includes all necessary components, such as required libraries,

dependencies, and environment variables, ensuring the runtime is tailored to the specific task's

operational needs.

The Primitive Runtime operates within this container and comprises three core components, as

illustrated in Figure 5-5:

D5.2 SmartEdge GA 101092908

95

• Subscriber: The Subscriber functions as the entry point for incoming data streams or

messages from other nodes or external sources. It supports various input protocols and

methods, including ROS (Robot Operating System), Zenoh, and RTSP (Real-Time

Streaming Protocol). For instance, in a typical scenario, the Subscriber might receive

video streams via RTSP using OpenCV, where the data consists of video frames intended

for further processing.

• Primitive Executor: At the heart of the Primitive Runtime, the Primitive Executor

processes the incoming data based on the assigned task. This component executes

computational or transformative operations such as object detection, object tracking,

image recognition, sensor data fusion, data aggregation, or event detection. In the

provided example, the Primitive Executor utilizes the YOLO model to perform Object

Detection on video frames received from the Subscriber. The processed data is then

forwarded to the Publisher for dissemination.

• Publisher: After completing the processing, the Publisher handles the transmission of

output data to the next node in the pipeline or back to the SmartEdge Coordinator. It

supports multiple output protocols and methods, including ROS, Zenoh, and DDS (Data

Distribution Service). In the aforementioned example, the Publisher converts the output

data from Object Detection into DDS format and publishes it to the designated topic,

facilitating seamless integration with downstream processes.

Detailed demonstrations of the SmartEdge Runtime's primitives are provided in Section 4.3,

showcasing their practical applications. Examples include vehicle counting at Junction 266 (Use

Case 2) and collaborative observation in a smart factory environment (Use Case 3). These use

cases illustrate the capabilities of the Primitive Runtime in real-world scenarios, highlighting its

flexibility and efficiency in executing diverse computational tasks.

5.2.2 SmartEdge Plugins
SmartEdge plugins enhance the functionality of the SmartEdge Runtime by enabling seamless

integration with external tools, libraries, and services. These plugins are designed to improve

the system's adaptability, performance, and versatility. They support specialized processing

tasks, leverage hardware acceleration, and enable interoperability with third-party systems,

making the SmartEdge Runtime a flexible and modular platform capable of meeting diverse

application requirements within the device-edge-cloud continuum.

The SmartEdge ecosystem includes several key plugins, such as the P4 Runtime Plugin for

advanced network control, in-network ML plugins for distributed machine learning inference,

and a Security Plugin to enhance system resilience and protect data integrity. Mendix is a

graphical low-code IDE. With components developed in WP3, it enables the implementation of

recipes within Mendix. The Mendix plugin for the SmartEdge runtime allows seamless

integration of SmartEdge nodes managed by the runtime into these recipes. Chunks and Rules

plugin supports cognitive artificial intelligence workflows. These plugins collectively expand the

capabilities of the SmartEdge Runtime, allowing it to address complex, distributed computing

scenarios with efficiency and scalability.

5.2.2.1 P4 Runtime Plugin
The P4 Runtime Plugin (see Figure 5-6) is a software module that handles the configuration of

the P4 switch, it offers an API that allows P4 controllers to interface remotely with the P4

switches within the swarm to access the functional services offered by the switch in order to

D5.2 SmartEdge GA 101092908

96

read the state of the P4 switch including the tables, counters, registers, and other relevant

configuration parameters. Furthermore, it allows the controller to make changes to the switch

configurations, such as adding or modifying table entries, or reading and writing from/to

registers. The plugin is composed of a control server and an agent, where the server runs on the

P4 switch and the agent connects over a TCP connection.

Figure 5-5. P4 Runtime Plugin between coordinator and AP or Smart Node

The swarm coordinator implements a control agent and is responsible for keeping track of the

state of the P4 switches in the network and updating the match-action entries every time a node

joins or leaves the swarm. The BMv2 software switch that is currently running in the access point

offers an API for Remote Procedure Call (RPC API) over both Apache Thrift protocol and Google

Remote Procedure Call (gRPC). The current P4 Runtime Plugin builds on the available python

BMv2 thrift library from the GitHub repository of the P4 group to implement its functionality.

There can be multiple P4 control agent software modules which keep an open connection to the

P4 switch control server, and whenever a change in the state of swarm is detected or a new

configuration need to be written by the coordinator or to be forced by the coordinator, the P4

control agent reads and verifies the state of the affected swarm nodes before sending the new

P4 configuration to the relevant nodes. This plugin constructs a higher abstraction layer that is

established on top of the original P4 thrift library.

The plugin is written as a python module and is imported by the main script of the coordinator,

it contains the necessary functionality that help to translate and communicate the high level

commands issued by the coordinator to the P4 switch without the need of the coordinator to

know the exact implementation of the P4 program or the exact communication protocol. It is

served as well by an event-logging module that keeps track of all the operations performed by

the plugin that serves the following purposes:

i. Keeping track of the swarm state evolution during the swarm lifetime.

ii. Debugging purposes for the improvement of the SmartEdge workflow.

iii. Following changes to the swarm state, that can be used in conjunction with other

telemetry data to help with the detection of security issues.

This plugin also offers the connectivity between various Access Points within the swarm,

allowing fast updates of other access points without the need for the coordinator to intervene

in order to propagate the change. For example, if a smart node disconnects abruptly from its

associated access point without sending the Leave message, this disconnection is detected by

D5.2 SmartEdge GA 101092908

97

the access point manager, and immediately transmitted as a P4 configuration update to access

points simultaneously, as well as an update to the coordinator to update the state of the swarm.

This plugin in this release implemented a few changes that have been made with respect to the

release reported in D5.1:

• Addition of the logging functionality.

• Collection of P4 telemetry data, has been made to be optional and can be activated for

certain nodes and certain types of packets.

• The Join and Leave messages in case the process is initiated by the swarm node, have

been extended to reach the coordinator which takes the final decision if a node is

accepted in the swarm or not.

The Switch message is deprecated, and smart nodes can move freely between Access Points

without the need to inform the coordinator.

5.2.2.2 In-Network Machine Learning

 Figure 5-7. In-Network Machine Learning Plugin

The purpose of this plugin is to deploy In-network machine learning components (e.g., intelligent

services based on Planter [Zheng24]), on edge servers within the swarm network. This allows for

real-time monitoring and necessary configuration of network quality and swarm nodes

connected to the network. For instance, by dynamically updating data forwarding rules to

schedule connectivity to different swarm nodes in the P4 data plane, the plugin aims to achieve

fast and stable communication transmission quality, as well as accurate application-specific

objectives.

Specifically, deployment of the In-network machine learning plugin at the swarm edge can be

divided into two phases: offline training and online inference (see Figure 5-7).

Offline Phase: In this phase, collected data from network links and swarm nodes can be input

into the Planter component within the control plane. Customized machine learning training

algorithm can be executed to infer various potential task objectives, such as determining

whether a node's position within the wireless network possesses sufficient network resources

D5.2 SmartEdge GA 101092908

98

for the required data transmission, or whether the current link quality is experiencing

congestion. Based on the training results, customized P4 code will be generated. This code

includes logic for making inferences within the P4 data plane based on real-time data.

Subsequently, according to the inference results, port forwarding rules can be updated to

exclude nodes with weak signal quality or those connected to congested links from the

forwarding path, thereby preventing unnecessary transmission delays or failures.

Online Phase: During this phase, the generated P4 code can be integrated into existing P4 data

plane code and deployed onto the edge device where it operates in real-time, processing

incoming swarm data packets. Once a specific swarm node is detected to be in a suboptimal link

state based on pre-trained models, the corresponding port forwarding rules are dynamically

updated (for example, avoiding forwarding to swarm nodes with weak signal quality). Similarly,

when a moving node regains good signal quality for real-time data exchange, it will be added

back to the forwarding table. At the same time, the P4 program continues to perform the

necessary inferences directly on the data plane, leveraging pre-trained models or logic to make

decisions at line rate. As these inferences occur, associated performance metrics and statistical

data—such as packet processing times, path selections, and load distribution—are continuously

recorded. This real-time data is then fed back into the control plane, where it can be analyzed

to further improve and refine the offline training models. This feedback loop helps to optimize

the system by allowing for adaptive learning based on actual network conditions and traffic

patterns, ensuring that future deployments are more efficient and responsive to changing

dynamics.

5.2.2.3 Security
IMC has completed security requirement gathering with the use-case partners, which was a very

successful exercise that helped to define, refine and generalize security expectations inherent

in the swarm computing paradigm of SMARTEDGE. As a result, we posed two problems: (i)

security support of a recipe computation by a swarm and (ii) security support of swarm crowd

sensing. Problem (i) is typical for swarms operating in a smart factory, while problem (ii)

naturally arises in sensor-swarms in smart cities, where sensors are co-located with humans

through either wearing them (as in medical use cases) or keeping them in a personal vehicle (as

in traffic control use cases).

Both problems were studied, and novel security protocols were proposed. Based on those,

software development of demonstrator security systems was initiated and is currently

underway. We expect to create two software suites (Artifact 1 and 2 below) that implement the

protocols.

5.2.2.3.1 Light-weight ledger for robot swarms

D5.2 SmartEdge GA 101092908

99

IMC has developed a low-cost security infrastructure for robot swarms to run recipes securely.

At the core of the proposal is a distributed ledger maintained using an extended version of the

Wintenitz Stack Protocol (WSP) [Shafarenko24]. The swarm orchestrator acts as the ledger

custodian by pushing frames on a stack according to the protocol. The smart nodes send state-

transition messages and additional protocol data that guarantee that

1. Each message is genuine

2. It has been received intact by all swarm members so that the ledger is consistent across

the swarm

The protocol operates on a zero-trust basis, which means that the content of all communications

can be proven to be genuine (or counterfeit) without trusting any member including the

orchestrator. The only requirement is that at least one node in the swarm is not compromised

(otherwise the fully compromised swarm would be able to collude and produce an alternative

ledger after the fact).

The ledger guarantees non-repudiation of any transactions based on the messages placed on

the ledger stack. We assume that the recipe is a state transition system. We do not care about

the precise semantics of the transitions as long as all of them depend only on the messages

received so far, since the ledger guarantees that those messages are genuine and have been

received by all swarm members in exactly the order they appear on the ledger. Since messages

can be of a variable size, they are not broadcast as such; they are stored in Content-Addressed

Storage (CAS) and their fixed-size hash value is broadcast.

Due to the low-latency requirement for robot swarm communications, the consensus

mechanism cannot be any one of the conventional arrangements (such as Proof of Work). Since

all messages are broadcast and since the broadcast is typically over the radio, we have proposed

that the consensus mechanism be optimistic (i.e. aiming to detect, rather than prevent the

ledger split) and that it is realized in the form of a Witnessed Broadcast Channel (WBC). The WBC

can be implemented as Wi-Fi broadcast with extra nodes (“witnesses”) preset at the scene,

which listen on the channel but never transmit on it. The witnesses use a protected side channel

D5.2 SmartEdge GA 101092908

100

to “compare notes” and to detect any discrepancies. No knowledge of the protocol is required

of a witness; all that witnesses are trying to establish is that broadcast messages are not jammed

and replaced as they travel across the premises. An attacker would not be able to suppress any

of the witnesses unnoticeably since their location is unknown not only publicly, but even to

swarm members themselves (thus eliminating the inside threats).

IMC will implement the protocol as a software suite with four components:

1. Orchestrator WSP driver (a Python library)

2. Smart node WSP driver (a Python library)

3. Adjudicator (a Python app)

4. CAS

At this time the protocol design is complete, and one of the four components (CAS) has been

implemented.

5.2.2.3.2 Anonymous Reputation Management System
In a crowd sensing swarm, smart nodes need to be trusted to provide genuine sensor data. This

is difficult, since the data includes the time and location of the sensor, which, in the case of

traffic control, is typically embedded in a car driven by a human. Registering the driver with the

purpose to authenticate the sensing report has an unfortunate side effect of disclosing personal

data, namely the location of the driver at a certain time. The uptake of the crowd-sensing traffic

control system could be impeded by users (drivers) needing to trust the system servers not to

disclose the time- and location-referenced identity to any third party as this would violate EU

GDPR and might create an opportunity for a criminal.

IMC have proposed a novel security protocol based on semi-blind signatures and Guy-Fawkes

linkage of the sensing report with the user’s anonymous certificate and reputation update

coupon. The algorithms involved no modular exponentiation by a swarm node due to the use of

a small public exponent; the protocol is thus low latency. It is important from the point of view

of swarm universality, i.e. suitability of the security infrastructure to swarms of any kind,

including low-footprint, energy-limited ones.

Figure 5-7. Overview of Autonomous Reputation Management System

Implementation. There are three components to implement: the Registration Authority (a

server), RA, the Reputation Server (RS) and the driver for the ARU (Anonymous Reputation

D5.2 SmartEdge GA 101092908

101

Update) Protocol. There is also the need for an extended version of CAS, but this component has

already been implemented by us.

5.2.2.4 Mendix Plugin

Figure 5-8. Mendix Plugin for SmartEdge Runtime

The Mendix plugin enables interaction between the SmartEdge nodes, which are under control
of the SmartEdge runtime (A5.4.1) and the recipes developed within the Mendix toolchain
(A3.4). This integration expands Mendix’s functionality, making it possible to design recipes and
execute applications that include the nodes that are controlled by the SmartEdge runtime
(A5.4.1).

Communication between the Mendix plugin and the swarm dynamic orchestrator is enabled by
Zenoh middleware. A Zenoh client will be implemented within the Mendix toolchain, enabling
the plugin to directly interact with the dynamic swarm orchestrator. The plugin uses Zenoh’s
publish-subscribe model to send CQELS-QL expressions for executing specific recipes within the
orchestrator. By subscribing to Zenoh topics, the plugin retrieves back the results from the
SmartEdge runtime.

Mendix IDE will be extended with the SmartEdge CQELS-QL Editor to allow users to create CQELS
expressions as part of their recipes.

5.2.2.5 Chunk and Rules
Chunks & Rules [https://w3c.github.io/cogai/chunks-and-rules.html] applies research in the

cognitive sciences to simplify IoT application development, layering on top of the hardware

abstractions provided by digital twins and devices using the robot operating system (ROS). Event

driven concurrent threads of behaviour are described with facts and rules using a convenient

easy to learn syntax at a higher level than RDF.

The cognitive architecture is inspired by John Anderson’s ACT-R, mimicking characteristics of

human cognition and memory, including spreading activation and the forgetting curve. The rule

engine operates on chunk buffers associated with cognitive modules, where each buffer holds a

single chunk, i.e. a collection of properties forming a unit of knowledge. This provides for much

higher performance compared to rules that operate directly on knowledge bases. Rule actions

are asynchronous, enabling distributed cognition and real-time control.

D5.2 SmartEdge GA 101092908

102

Perception builds live models of the environment for situational awareness, including events

that trigger appropriate behaviours. A built-in suite of operations can be used on chunk graphs.

Applications can define their actions in terms of intents, i.e. aims, purposes, goals or objectives.

An example is an intent for controlling a robot arm. The intent specifies the position and

orientation of the arm’s gripper, but not the details of the various actuators in the arm, nor the

trajectory for smoothly changing them from the current state to the target state.

This mimics the brain where decisions formed by sequential cognition are delegated to the

cortico-cerebellar circuit. This determines which muscles to use and generates real-time control

signals using feedback via perceptual models in the cortex. An example is reaching out to grab a

mug of coffee on your desk. This uses a combination of dead reckoning and corner of the eye

perception to fine tune motions. This architecture decouples reasoning from real-time control.

ROS is an open-source framework for robots with a strong developer community. It is message

based with hardware abstraction. Applications can subscribe to topic-based streams and invoke

services using request/response pairs. Chunks & Rules is a good fit to controlling ROS devices.

ROS streams can be used to update chunk models of the robot and its environment, as well as

to trigger events. Chunk & Rules can be used to invoke ROS services with delegation for planning

and execution.

A single cognitive agent may be used to control multiple devices. In the web-based factory demo,

a single Chunks & Rules agent controls two conveyor belts, one robot arm, a bottle filling station

and a bottle capping station. The bottles are placed into boxes holding two rows of three bottles.

Another demo simulates a smart home with control over lighting and heating, along with

presence-based implementation of personal preferences.

Cognitive rules can respond in milliseconds and can be complemented by faster reactions using

simple reflex responses implemented at a lower level. Application development is a

collaboration between the people maintaining the low-code description of high-level behaviour

and system programmers responsible for the lower-level code needed to integrate digital twins

for sensors and actuators. Development starts using a simple approach and iteratively refines it

as new requirements come to light, e.g. when something unexpected occurs at run-time and

needs to be handled. This may necessitate improvements to digit twins, e.g. to sense error

conditions. In the robot example, unusual situations could include a bottle falling over, being

only partially filled or badly capped.

Chunks & Rules is well suited to swarms of agents. They can take on different roles as needed,

and communicate by name, role, topic or proximity. Agents can further leave messages in the

environment as a form of stigmergy. This involves a high level of abstraction that hides the

details of the underlying protocols and communication technologies. Agents can work together

to form collective (hive) minds in relation to situational awareness and hive goals. This allows

agents to collaborate on combining diverse sources of information from different sensors into a

unified model of the environment, and likewise to collaborate on solving goals.

In respect to implementation, open-source JavaScript libraries are available for the Chunks &

Rules engine, and for interfacing to ROS and dealing with the lower-level messaging protocols.

These libraries can be used with NodeJS. Work is underway to study the feasibility of integrating

Chunks & Rules within Mendix. The concept of “recipes” in Mendix is essentially the same as

“intents” for Chunks & Rules, in that they specify what needs to be done, but not how. This also

relates to the Web of Things, which uses JSON-LD to describe the affordances of digital twins in

respect to an object model with properties, actions and events.

D5.2 SmartEdge GA 101092908

103

5.2.3 Low-code IDE
To minimize programming efforts, the artifact is implemented with a GUI that allows users to

describe application specifications using natural language or drag-and-drop functionality (via the

Mendix Plugin). This user-friendly interface enhances accessibility and simplifies the process of

specifying applications, enabling users to easily interact with the system and create complex

programs without extensive coding knowledge.

The Low-code IDE also includes a compiler responsible for transforming application

specifications into semantic programs. These semantic programs are subsequently interpreted

by SmartEdge coordinators to assemble SmartEdge swarms. In this phase, the compiler also

prepares scripts for the SmartEdge Runtime to deploy SmartEdge primitives required by the

application. This feature ensures seamless integration and execution of application

functionalities within the SmartEdge environment, optimizing performance and user

experience.

5.2.3.1 Model Builder
The Model Builder is an intuitive graphical user interface designed for the training and

deployment of customized computer vision models, as shown in Figure 5-9. It streamlines the

development process by integrating user inputs as based on a SPARQL interface, facilitating

efficient access and exploration of pre-trained models through both SPARQL queries and natural

language inputs.

Figure 5-9. Pipeline of the Model Builder

This dual-input capability significantly empowers users by articulating their specific

requirements or criteria through interactive graph query patterns, thereby enhancing its

usability towards desired use cases or tasks, such as detection and classification, segmentation,

or visual relationship detection. To ease the deployment of trained learning systems towards

diverse edge devices, in this part, we will introduce a cross-device inference engine build, as

shown in Figure 5-10. In this way, we will utilize computing power either from the cloud or edge

to find the best-fit operators (trade-off between the inference speed and metrics of evaluation)

for target devices, aiming to accelerate the inference.

D5.2 SmartEdge GA 101092908

104

Figure 5-10. Cross-Devices Inference Engine Builder

Following the selection of a task, the system will showcase a comprehensive list of all models

compatible with the selected task. Furthermore, the integration of Automated Machine

Learning (AutoML) will ease the learning curve of potential users in various algorithms,

architectures, and configurations. It also simplifies the process of model ensemble and optimizes

the selection of models tailored to specific use cases, as shown in Figure 5-11.

Figure 5-11. Overview of the construction of learning / evaluating pipeline using VisionKG

With model builder, users can initiate a training pipeline by writing queries to construct models

targeted at diverse composite visual datasets. Specifically, users can retrieve images and

annotations using a few lines of SPARQL code to employ RDF-based descriptions and obtain

desired data, such as images with box-level annotations of car and person from interconnected

datasets in VisionKG. Combined with popular frameworks like PyTorch and TensorFlow, or

toolboxes such as MMDetection and Detectron2, users can leverage the retrieved data to

construct customized learning models using minimal Python code effortlessly. Benefiting from

the interconnected datasets and extensive model zoo, users only need to specify the model they

wish to use and the hyperparameters they intend to set. Figure 5-12 presents a simplified

example of code for constructing an object detector using VisionKG data.

D5.2 SmartEdge GA 101092908

105

Figure 5-12. A simplified example of VisionKG pipeline serving to the Model Builder

In this way, based on VisionKG built-in model builder, users can carry out more complicated

MLOps steps, from dataset exploration, and distillation to training execution, including

composing visual datasets with unified access and taxonomy through SPARQL queries,

automating training and testing pipelines, and expediting the development of robust visual

recognition systems. The proposed model builder's features enable users to efficiently manage

data from multiple sources, reduce overheads, and enhance the efficiency and reliability of

machine learning models.

5.2.3.2 Metric Reporting & Visualization
The metric reporting and visualization solution allows collecting any system data, storing it, and

evaluating various metric types in streaming media applications. With this SmartEdge

components and use cases can be monitored and visualized. The aim is to improve the behavior

of the monitored components and to detect error states.

5.2.3.2.1 Main components and Functionalities/Features
The metrics solution is made up of three conceptional components: metrics providers, a metrics

server and metrics consumers. Figure 5-13 gives an overview of the structures. It also shows that

multiple providers and consumers are possible whereas a default metrics consumer as Grafana

Dashboard is provided.

Figure 5-13. Metric Reporting and Visualization Components

The metrics client is about reporting any network or application specific metrics, for example

the current video stream bitrate, the client-side playback framerate and the round-trip time

D5.2 SmartEdge GA 101092908

106

between client and server if a video stream playout is monitored. If the target is to monitor the

hardware state of a specific machine the metrics client may collect data about the system

platform such as CPU and GPU performance, memory utilization and storage space available. It

should be noted that the set of metrics can be extended depending on the requirements of the

metrics client.

All collected metrics are sent to the metrics server, which exposes its functionality through a

REST interface. The data is sent in JSON format, the schema for which is shown in the following

section.

Lastly, the metrics stored on the metrics server can be continuously visualized. For visualizing

the data, a Grafana dashboard is provided. The dashboard allows real-time system monitoring

so that changes in the monitored system are directly reflected in the dashboard. In addition to

the dashboard all collected data can be requested by external applications so that specific

analytics can be made for cases where the dashboard is not sufficient.

5.2.3.2.2 Component implementations
Message Schema

Any metric report must be sent to the server in JSON format. This section describes the message

schema expected by the metrics collection server through one example for each side.

Mandatory key-value pairs are highlighted with bold text. Other pairs are optional.

The following listing shows an example JSON as currently reported by the remote rendering

artifact:

[

 {

 "Body": {

 "rsi": "ec0934f2-72cc-4b1f-8e5c-cd46f7cca34a",

 "ts": "1731925738",

 "mt": "PerformanceMetricType",

 "ge": "unity",

 "sn": "Remote Warehouse V100",

 "vc": "VP8, rtx, VP9, H264, AV1, red, ulpfec",

 "ac": "opus, red, multiopus, ILBC, G722, PCMU, PCMA, L16, CN, telephone-event",

 "gm": "Tesla V100-PCIE-32GB",

 "cm": "Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz",

 "cpu": "144",

 "gpu": "79",

 "sysMem": "7500",

 "gpuMem": "3465",

 "hn": "hostname"

 }

 }

]

The JSON consists of a list with a single object inside. This object has the attribute “Body”, which

is mapped to an object holding all reported values. “rsi” and “ts” are mandatory fields, the first

of which holds the unique identifier of the renderer while the second is the timestamp for which

data is reported. The following list explains each subsequent optional key-value pair:

D5.2 SmartEdge GA 101092908

107

Key Value Description

rsi (mandatory) Unique identifier of the reporting instance (as uuid)

Ts (mandatory) timestamp as seconds since 1.1.1970 (unix epoch timestamp)

mt Metric type (currently only performance)

ge Rendering engine (unity, unreal engine)

sn Scene name (identifier for the rendered scene)

vc List of supported video codecs

ac List of supported audio codecs

gm GPU model

cm CPU model

cpu CPU utilization in %

gpu GPU utilization in %

sysMem Absolute CPU memory utilization in MB

gpuMem Absolute GPU memory utilization in MB

hn Hostname
Table 5-1 optional default reporting values

The following listing shows an example JSON as currently reported by a WebRTC client which

consumes a video stream. As previously, mandatory fields are highlighted with bold letters.

[

 {

 "Body": {

 "rsi": "f900d288-0127-4a8d-9476-5e9ad77df5f2",

 "cid": "ab077924-c19b-4b0d-87c9-e5b7f9b7d140",

 "ts": "1697627086",

 "mt": "WebRTCMetricType",

 "ua": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/127.0.0.0 Safari/537.36",

 "rvc": "H264",

 "rvr": "1244x1080",

 "rtt": "27",

 "rvb": "49239",

 "minvb": "10000",

 "maxvb": "80000",

 "vfr": "60",

 "maxvfr": "60"

 }

 }

]

The “rsi”, “cid” and “ts” are mandatory values. “rsi” is the unique identifier of the rendering

server the client is connected to. This value is used to match the client metric to the correct

rendering instance. “cid” is the unique identifier of the client and “ts” is the timestamp for which

data is reported.

Key Value Description

rsi (mandatory) Unique identifier of the reporting instance (as uuid)

cid (mandatory) Unique identifier of the client (as uuid)

D5.2 SmartEdge GA 101092908

108

ts (mandatory) timestamp as seconds since 1.1.1970 (unix epoch timestamp)

mt Metric type (currently only WebRTCMetricType)

ua user agent of the clients web engine

rvc Video codec

rvr Display resolution (height x width)

rtt Round-trip time (in ms)

rvb Video Bitrate

minvb Minimum bitrate (specified initially)

maxvb Maximum bitrate (specified initially)

vfr Video framerate (number of images per second)

maxvfr Maximum framerate (specified initially)
Table 5-2 optional default values for clients

Reporting to the Metrics Server

Using the message schemas above, metrics can be reported to the server. For this project, a

REST interface is provided at the following URL:

https://metaverse-sand.servicebus.windows.net/smartedgehub/messages

The interface allows POST requests (the url does not show content in a web browser) that

contain formatted messages in the request body. The correct format to send messages requires

escaped quotation marks. The following shows a minimal example of a correctly formatted

message that would result in the entry being added to the database:

[{"Body": "{\"ts\": 1697627086, \"cid\": \"cdc051e9-f19e-42ca-8ca0-1d69aba6b65b\", \"mt\":

\"WebRTCMetricType\", \"rtt\": 45, \"rsi\": "b923a654-967e-4bfe-9571-117f33c25e5e"}"}]

Additionally requests to the metrics server require the following HTTP headers:

- “Content-Type” with the value “application/vnd.microsoft.servicebus.json”
- “Authorization” with the value “SharedAccessSignature sr=metaverse-

sand.servicebus.windows.net%2Fmetaversehub&sig=<SIG>se=<SE>&skn=MetaverseP
ublish”

o <SIG> and <SE> need to be replaced by the correct authorization values that
are shared through secure channels and can be requested from the artifact
owner

5.2.3.2.3 Experiment and Demonstration
The data reported to the metrics server is visualized in close to real-time on the SmartEdge

dashboard available at the following URL:

http://metaverse.westeurope.cloudapp.azure.com:3000/d/adb16c20-6333-4f35-9a24-

0276b57b95ef/uc1-remote-rendering?orgId=1&refresh=5s

The user name and password that is needed to access the dashboard can be requested from the

Artifact Owner.

https://metaverse-sand.servicebus.windows.net/smartedgehub/messages
http://metaverse.westeurope.cloudapp.azure.com:3000/d/adb16c20-6333-4f35-9a24-0276b57b95ef/uc1-remote-rendering?orgId=1&refresh=5s
http://metaverse.westeurope.cloudapp.azure.com:3000/d/adb16c20-6333-4f35-9a24-0276b57b95ef/uc1-remote-rendering?orgId=1&refresh=5s

D5.2 SmartEdge GA 101092908

109

Figure 5-14. Screenshot of the SmartEdge Metrics Dashboard

Figure 5-14 shows an example Dashboard as currently used by the remote rendering artifact.

For use case 1 a metrics provided is currently in development. For use case 2 a dashboard

template was created based on the example metrics provided in D5.1.

5.2.3.3 Remote Rendering
The 3D Remote Rendering and Streaming framework allows accessing photorealistic interactive

3D environments on commodity devices. This is achieved by offloading graphical computation

from the user device to a nearby GPU-enabled cloud or edge compute node.

5.2.3.3.1 Main components and Functionalities/Features
Rendering 3D environments elsewhere and using user-devices purely for playback opens up a

wide variety of possibilities for industrial applications, such as utilizing cloud resources for

running physics-based simulations while providing the possibility for real-time observation. 3D

environments can be instantiated and stopped on cloud infrastructure on-demand, reducing

cost. Coupled with 5G, ultra-low latency connections between the user, the graphical compute

node, and physical systems enable real-time bidirectional interactions between virtual and

physical systems, allowing remote work where it was not possible before.

Figure 5-15. Remote Rendering Architecture

D5.2 SmartEdge GA 101092908

110

Figure 5-15 shows the components of the remote rendering system. The architecture consists

of three distinct segments, which are clients (left), renderers (right), and a central coordinator

responsible for connecting the two (top).

Both renderers and clients connect to the central coordination server upon being instantiated.

Whenever a client wants to establish a connection to a renderer, the coordination server

facilitates that the connection offers a channel for message exchange between the two

components. After this connection negotiation, a direct connection is established between a

client and a renderer. This connection is used to send control data from the client to the renderer

and video data from the renderer to the client.

At their core, renderers are instances of either Unity or Unreal Engine that are run in headless

mode, meaning that compared to the default execution, the visual output of the game engine is

not shown on a connected device but rather encoded and forwarded to a different display

location. This game engine instance expects to receive control data (i.e., data used to manipulate

the 3D environment or the virtual camera within) from a remote location via a WebRTC

DataChannel. Control data can be button presses on a keyboard, movement of a VR controller,

mouse clicks or any other data, such as IoT data or remote-control data for physical devices, as

long as it can be handled by the 3D application. Once received, the control data is read and

mapped to an appropriate change in the 3D environment, which could be changing camera

position, moving an avatar, or mirroring the state of an IoT device. Subsequently, the output of

a virtual camera placed within the 3D environment is encoded as a video and sent to the client,

where it can be viewed by the interacting user. Clients are connected to renderers in an n:1

relationship.

Before a renderer can establish a connection and exchange information with a client, the

WebRTC signaling procedure needs to be performed. This process is facilitated by the

Coordination Server, to which a WebSocket connection is established as soon as the renderer is

instantiated. This connection is open throughout the entire lifecycle of the renderer, in case a

new connection needs to be negotiated.

Renderers, including the game engine instance and all other supplementary components, such

as encoding, message exchange, and configuration, are packaged as Docker containers, allowing

streamlined deployment on any public or private compute infrastructure, as long as it utilizes

NVIDIA GPUs.

In the remote rendering architecture, clients are responsible for forwarding control data to

renderers and playing back the returned video stream. They are implemented using web

technologies, resulting in high compatibility with consumer devices, such as computers, mobile

phones, and VR devices. A client is connected to a renderer via a direct WebRTC connection,

where control data is sent to the renderer via a DataChannel and video data is received via a

media connection.

As is the case with each renderer, every client opens a WebSocket connection to the

coordination server upon being instantiated. This connection is used to perform the WebRTC

signaling procedure necessary to build a peer-to-peer communication to a renderer. This

connection stays open throughout the client’s entire lifecycle, in case a new connection needs

to be negotiated.

D5.2 SmartEdge GA 101092908

111

Upon being opened, the coordination server sends a list of connected renderers to the client’s

WebSocket connection. The client can then choose a renderer it wants to connect to from this

list, which initialized the WebRTC signaling process.

The main task of the coordination server is facilitating the connection process between clients

and renderers. As mentioned in previous sections, both clients and renderers first need to

establish a WebSocket connection to the coordination server before they can build a direct

WebRTC connection. Any messages necessary to negotiate an appropriate connection are sent

to the signaling server by both parties and are then forwarded to the message target. In general,

whenever a client wants to connect to a renderer, it sends an initial connection message via the

coordination server. The message contains an identifier for the target renderer and additional

information, such as a username. The coordination server maps the identifier to the WebSocket

connection belonging to that renderer and forwards the message without change. Responses

are handled the same way. The channel is then used to perform WebRTC signaling. Besides this,

the coordination server includes a STUN and a TURN component, bundling all WebRTC related

services in one place.

5.2.3.3.2 Component implementations
In the context of this project, a dedicated remote rendering system was set up and is accessible

to the partners. It is based on the Unity Gaming Engine and can be accessed at

https://fameverse.fokus.fraunhofer.de/smartedge/. The credentials were made accessible

within the project and can be requested from the artifact owner.

Both clients and renderers continuously report metrics to the Metrics Server, which is described

in detail in chapter Metric Reporting & Visualization. Metrics include application metrics, such

as the renderer’s rendering framerate, and CPU, GPU and memory utilization, but also network

metrics, such as the streaming bitrate, jitter, and round-trip time. On the client side, the video

framerate is reported to the metrics server. Visualizations then allow to identify deployment

issues and find the optimal deployment for a specific use case.

5.2.3.3.3 Experiment and Demonstration
The default instance of the Remote Rendering presents a selection screen of the client to the

user. Here a scene that is available on the server can be selected (for example a scene that

relates to a specific use case). After clicking it, the user can decide on a username and press the

appearing “Join” button, which will connect the client to the renderer, displaying the 3D

environment (see Figure 5-16). Currently test scenes like the factory scene in the image as well

as a Use Case 1 scene with virtual streets of the Helsinki test area of Use Case 2 are available.

Figure 5-16. Renderer Selection (left) and Environment View (right)

https://fameverse.fokus.fraunhofer.de/smartedge/

D5.2 SmartEdge GA 101092908

112

For the next version of the artifact it is planned to add W3C Thing Description over MQTT

support to control objects in the scenes the same way as physical objects would be controlled

using W3C Thing Descriptions. The aim is to use virtual objects using recipes and the thing

description directories as defined in work package 3.

The remote rendering pipeline can be applied to existing 3D environments made with Unity 3D.

This requires supplementing an existing 3D application with all necessary libraries, including

input mapping and control, metric reporting, video streaming, configuration, and coordination

packages.

Also, the Remote Rendering architecture integrates the Metrics Reporting and Visualization

Artifact and thus acts as example application for the usage of the Metric Reporting and

Visualization.

5.2.3.4 Ego-vehicle Visualization (A5.4.4.4)

5.2.3.4.1 Main components and Functionalities/Features

Figure 5-17. Visualizer Breakdown Architecture

The Visualizer is a tool developed to help visualize and interact with data from vehicles. The goal

is to simplify how data from autonomous vehicles (AVs) is collected, processed, and understood.

The tool provides a comprehensive way to view data from multiple sources, including lidars,

cameras, and radars, all in one synchronized view.

The main aim of this system is to make it easier to monitor and analyze data from AVs. Working

with data (both offline and live data) from multiple sources can be very challenging, especially

when the data needs to be processed and visualized quickly and accurately. The Visualizer solves

this problem by providing a system that can visualize this data in a clear and interactive way,

improving tasks like debugging and testing AV systems.

To enhance portability and scalability, the entire system is containerized using Docker. This

approach ensures consistency across different environments and simplifies deployment

processes.

Figure 517 illustrate the architecture overview of the artifact Ego-vehicle Visualization. The

Visualizer has two major components:

• The Data Processing component, which handles data collection, synchronization, and

preparation.

• The Visualizer component, which allows users to view and interact with the data on a

web interface.

D5.2 SmartEdge GA 101092908

113

System requirements:

• Operating System: Linux (recommended Ubuntu 20.04 LTS or later for compatibility and

stability).

• Containerization: Docker installed and configured for managing containerized

applications efficiently.

• GPU Support: Dedicated GPU(s) with CUDA support enabled to accelerate deep learning

tasks.

• Graphical User Interface (GUI) Support: GUI enabled on the system to support

visualization components and interactive interfaces.

5.2.3.4.2 Component implementations
The Data Processing component is the backend of the system. It manages and prepares data

from various sensors across multiple vehicles. It's built on a customized version of the XVIZ

server, originally developed by Uber, and uses Node.js for high performance and scalability.

ROS compatible: Data acquisition from various sensors, including cameras, lidar, radar, and

other autonomous vehicle sensors are managed through the Robot Operating System (ROS).

ROS operates on a publish-subscribe model where data is continuously published by different

sensors and subscribed to by the Data Processing component. This mechanism allows for real-

time synchronization of sensor data from multiple vehicles, which is essential for accurate

visualization. Synchronizing data across multiple sources and vehicles is crucial to provide a clear

and consistent picture of how different vehicles interact with their environment and with each

other.

Perception Module for High-Level Data Extraction: A key feature of the Data Processing

component is the Perception Module, which processes raw sensor data to extract higher-level

information. This module utilizes deep learning frameworks such as TensorFlow, PyTorch or

other open-source models, implemented in Python, to perform tasks like object detection and

semantic segmentation. By processing camera and lidar data, the Perception Module generates

3D object information and environmental context, which is crucial for understanding the

surroundings of the vehicle. The use of GPU acceleration and optimized neural network

architecture ensures that the perception tasks are performed efficiently.

XVIZ components and Synchronization for Real-Time Multi-Data Handling: This part plays a

crucial role in managing and processing data before visualization. The data from previous steps

are then routed to the XVIZ components, which encode the information into a standardized,

real-time streaming format optimized for autonomous systems visualization. The synchronizer

within the XVIZ module ensures that data from different ROS bags (each potentially with its own

timestamp and rate) is time-aligned, creating a coherent, unified data stream. This synchronized

data is then passed to the visualizer, where it can be displayed in real time, allowing for accurate

and interactive analysis of multi-source data in a simulated live environment.

Dynamic Knowledge Graph for Real-Time Data Correlation: In addition to this, a Dynamic

Knowledge Graph is integrated into the Data Processing component. This knowledge graph is

used to model and link data points in real-time, allowing for dynamic interactions. Users can

query this knowledge graph using SPARQL, a specialized query language that enables specific

questions to be asked about the relationships between data points from multiple vehicles and

sensors. This feature provides a deeper level of insight, allowing users to explore correlations

D5.2 SmartEdge GA 101092908

114

between sensor readings, compare data across different vehicles, and better understand

complex situations.

To ensure consistent and easy deployment across different environments, the entire Data

Processing component is containerized using Docker

The Visualizer component provides an interactive interface for viewing and interacting with the

data that has been collected and processed by the backend. This component is built using the

open-source platform Streetscape.gl, which was also developed by Uber. The interface of the

visualizer is designed to be simple yet powerful, helping users explore and analyse complex data

from multiple vehicles. The visualizer is divided into two main sections that make interaction

intuitive as shown in Figure 5-18.

Semantic Query Input for Customized Data Display: On the left side, there is a SPARQL query

text box. This text box allows users to enter specific queries to control what is displayed on the

visualization screen. Users can request data about a particular vehicle, filter the data based on

sensor types, or analyze interactions between different vehicles. This interactive element makes

the visualizer flexible and user-driven, allowing users to decide which parts of the data they want

to focus on and how they want it displayed.

Dynamic Data Visualization Interface: On the right side of the interface, the visualizer displays

the visual representation of the data. This area shows point clouds, detected objects, and other

geospatial information gathered from various sensors across multiple vehicles. The visualizer

can handle both real-time data, which allows users to monitor live data streams from different

vehicles simultaneously, and offline data, where recorded information can be replayed for

analysis. This dual capability is particularly helpful for both real-time monitoring and

retrospective debugging or testing.

Figure 5-18. Demonstration Visualizer

D5.2 SmartEdge GA 101092908

115

Multi-Source Data Integration for AV System Analysis: The Visualizer component's ability to

combine data from multiple sources and vehicles makes it an effective tool for engineers and

developers working on AV systems. For example, engineers can replay a recorded scenario and

analyze how each vehicle's sensors reacted to the same object or situation. The visualizer

supports this analysis by allowing users to query and visualize data flexibly, which is useful for

identifying problems and making improvements. It is particularly effective in urban settings

where multiple AVs may be operating together, offering insights into vehicle interactions and

helping improve the systems for real-world conditions.

5.2.3.4.3 Experiment and Demonstration
Hardware setup

NVIDIA Jetson Orin 64GB:

• Memory: 64GB LPDDR5 RAM with 204.8 GB/s bandwidth, supporting large datasets and

multiple data streams simultaneously.

• CPU: 12-core ARM Cortex-A78AE, optimized for parallel processing and efficient task

distribution across cores.

• GPU: NVIDIA Ampere architecture with 2048 CUDA cores and 64 Tensor Cores,

delivering powerful AI acceleration for 3D rendering, real-time data analysis, and deep

learning.

Software setup

• Docker platform.

• Operating System: The visualizer operates on Ubuntu 22.04, specifically tailored with

NVIDIA’s JetPack SDK

• ROS 2 Framework: The visualizer uses ROS 2 (Humble), which enables real-time data

handling and reliable inter-process communication through the DDS middleware.

• Data Preparation: Live ROS data is sourced from a car/robot or ROS bag files containing

standard ROS messages collected from the UC2 Cars setup, which operated across the

city of Helsinki.

Due to the limited availability of vehicles, we used recordings from three locations with the same

vehicle, adjusting the timestamps to a common starting point. This simulates multiple live-

streaming vehicles, allowing us to visualize the data in our Visualizer.

Demonstration

This Figure 5-19 displays our visualizer actively monitoring data streams from three synchronized

vehicle sources in real time. In this view, you can see multi-vehicle data seamlessly integrated,

providing a live, comparative look at each vehicle’s sensor outputs and location data.

D5.2 SmartEdge GA 101092908

116

Figure 5-19. Simultaneously visualize data streaming from 3 vehicles

5.2.3.5 Swarm Visualization
This artifact focuses on the use of Web browsers to monitor and control swarms. It assumes that

the current state of the swarm is available to a server running at the edge or in the cloud. The

server hosts the web page and associated resources, as well as supporting Web Sockets for

streaming the swarm state to the web page, along with messages for controlling the swarm. A

particularly simple approach to implementing the server is to use NodeJS.

The web page uses HTML5’s CANVAS element to render a visualization of the swarm state, either

as a 2D, 2.5D or 3D presentation. We will focus on a 2.5D isometric presentation in the current

description. The web page script uses the window.requestAnimationFrame method to render

each frame at a rate dependent on the speed of the computer the browser is running on. The

CANVAS2D API makes it straightforward to draw text and graphics on the screen area provided

by the CANVAS element. Bitmapped image resources can be loaded from PNG resource files.

2.5D isometric presentations are often used in computer games such as Sim City, as well as in

traditional Chinese scroll paintings. The approach is akin to viewing a scene from a very long

distance so that parallax effects are negligible. This has the advantage that the size of an object

is unchanged regardless of its position in the scene. To ensure a convincing composition, you

need to render objects in sequence, so that objects closer to the viewer are drawn after objects

further from the viewer. This involves mapping the object locations (x, y, z) to the HTML5

CANVAS coordinates (u, v).

D5.2 SmartEdge GA 101092908

117

Figure 5-20. Coordinate transformations

This is a slight simplification, as you will probably want to provide users with the means to pan

and zoom scenes. The next step is to sort the scene components into the order in which they

need to be rendered. A simple yet efficient algorithm considers the bounding box for each object

in respect to the ground plane (x, y).

Figure 5-21. Rendering order

D5.2 SmartEdge GA 101092908

118

The scene components are associated with bitmap images showing them from multiple points

of view corresponding to different rotations. The following example shows a truck rendered at

45-degree intervals. To speed loading the bitmaps for the different rotations are concatenated

into a single PNG image resource, e.g.

Figure 5-22. Object orientations

The images can be generated by imaging a 3D model created in an editing tool like Blender in

conjunction with a Python script.

The swarm state is modeled as a set of objects with their (x, y, z) cartesian coordinates, scale

and rotation. The object’s velocity allows the web page to compute the current position and

orientation at the exact time for rendering each frame.

Some complications arise when one object overlaps another, e.g. when the forks of a forklift

truck are moved into the base of a pallet prior to moving some goods around in a warehouse.

This is handled by decomposing the 3D model into smaller components that can be rendered in

the correct order to provide the desired visualization.

Another technique involves offscreen compositing along with the means to apply image masks.

This can be applied, for instance, to forklifts moving goods into and out of a truck positioned at

a loading bay in a warehouse.

W3C/ERCIM can provide coding and design assistance to use-case owners, as the details will

depend on the needs of each use-case. We have a proof-of-concept demonstrator SimSwarm

that simulates a warehouse where a swarm of robot forklifts transport pallets of goods between

incoming and outgoing trucks, using shelving as temporary storage as needed. The

demonstrator allows users to hover the mouse pointer over the forklifts to see pop-ups showing

information on the pallet’s contents and the job number.

• SimSwarm: https://www.w3.org/Data/demos/chunks/warehouse/

https://www.w3.org/Data/demos/chunks/warehouse/

D5.2 SmartEdge GA 101092908

119

Figure 55-23. SimSwarm smart warehouse

The demonstrator routes forklifts along a predefined grid close to the shelves and point to point

elsewhere. The forklifts need to be sent to recharge stations when their battery levels demand.

The approach uses collision avoidance rules from the perspective of each forklift, along with

freezing when a human is nearby (see the above example). The truck manifests are generated

stochastically from statistical distributions over pallet types. Job control allocates forklifts to

jobs taking into account their current battery levels.

W3C/ERCIM looks forward to collaborating with use case owners to apply web-based

monitoring and control to the needs of their specific use cases. We will re-use the algorithms

developed for SimSwarm and offer help with the web page scripts and associated resources6.

D5.2 SmartEdge GA 101092908

120

6 CONCLUSIONS

This deliverable D5.2 presents the first implementation documentation for goals in Objective 5

of the SmartEdge project: Low-code Programming Tools for Edge Intelligence providing. We

divided this component into four main modules: (1) semantic driven multimodal stream fusion

for Edge devices; (2) swarm elasticity via Edge-Cloud Interplay; (3) adaptive coordination and

optimization; and (4) cross-layer toolchain for Device-Edge-Cloud Continuum. In each module,

we presented the main (sub-)components and their functionalities, following up with the

detailed implementations. Additionally, we also presented initial experimental results and/or

demonstrations.

The first implementation details were aligned with our design presented in D5.1 and carefully

mapped to corresponding artifacts in WP6. However, this deliverable does not cover artifacts,

which are planned to be released in the future, i.e. after the milestone of this deliverable, as

detailed in Section 1.

D5.2 SmartEdge GA 101092908

121

REFERENCES

[Aberer01] K. Aberer, "P-Grid: A self-organizing access structure for P2P information systems",
in Cooperative Information Systems: 9th International Conference, CoopIS 2001 Trento, Italy,
September 5–7, 2001 Proceedings, vol. 9, Springer Berlin Heidelberg, pp. 179-194.

[ACT-R] “ACT-R Research Group, CMU”, last modified 2023, URL: http://act-r.psy.cmu.edu/

[Anh18] A. Le-Tuan, C. Hayes, M. Wylot, and D. Le-Phuoc. Rdf4led: An rdf engine for lightweight

edge devices. In IOT ’18, 2018.

[Anh19] A. Le-Tuan, D. Hingu, M. Hauswirth, and D. Le-Phuoc. Incorporating blockchain into rdf

store at the lightweight edge devices. In Semantic ’19, 2019

[Anh21] Le Tuan, Anh, et al. "VisionKG: Towards A Unified Vision Knowledge Graph." ISWC

(Posters/Demos/Industry). 2021.

[Auer17] Auer, Sören, et al. "Dbpedia: A nucleus for a web of open data." international semantic

web conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[Balazinska04] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based load

management in federated distributed systems. In NSDI’04, 2004

[Biffi20] Biffi, Leonardo Josoé, et al. "ATSS deep learning-based approach to detect apple fruits."

Remote Sensing 13.1 (2020): 54.

[Bowden22] Bowden, David, and Diarmuid Grimes. "Intelligent Image Compression Using Traffic

Scene Analysis." Irish Conference on Artificial Intelligence and Cognitive Science. Cham: Springer

Nature Switzerland, 2022.

[Carion20] Carion, Nicolas, et al. "End-to-end object detection with transformers." European

conference on computer vision. Cham: Springer International Publishing, 2020.

[Chen21] Chen, Qiang, et al. "You only look one-level feature." Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2021.

[Chen23] Chen, Qiang, et al. "Group detr: Fast detr training with group-wise one-to-many

assignment." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

[Chen19] Chen, Tianshui, et al. "Knowledge-embedded routing network for scene graph

generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2019.

[Chunks and Rules] “Chunks and Rules Specification”, W3C Cognitive AI Community Group, last

modified 04 January 2024, URL: https://w3c.github.io/cogai/chunks-and-rules.html

[Cong23] Cong, Yuren, Michael Ying Yang, and Bodo Rosenhahn. "Reltr: Relation transformer for

scene graph generation." IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

[Cudre-Mauroux13] Philippe Cudré-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth,

Albert Haque, Andreas Harth, Felix Leif Keppmann, Daniel P. Miranker, Juan F. Sequeda, Marcin

Wylot: NoSQL Databases for RDF: An Empirical Evaluation. ISWC (2) 2013: 310-325.

[Cui22] Cui, Yu, and Moshiur Farazi. "VReBERT: a simple and flexible transformer for visual

relationship detection." 2022 26th International Conference on Pattern Recognition (ICPR). IEEE,

2022.

http://act-r.psy.cmu.edu/
https://w3c.github.io/cogai/chunks-and-rules.html

D5.2 SmartEdge GA 101092908

122

[Dai16] Dai, Jifeng, et al. "R-fcn: Object detection via region-based fully convolutional networks."

Advances in neural information processing systems 29 (2016).

[Danh11] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive

approach for unified processing of linked streams and linked data. In ISWC’11, pages 370–388,

2011.

[Danh15] D. Le-Phuoc, M. Dao-Tran, C. Le Van, A. Le Tuan, T. T. N. Manh Nguyen Duc, and M.

Hauswirth. Platform-agnostic execution framework towards rdf stream processing. In RDF

Stream Processing Workshop at ESWC2015, 2015.

[Danh17]D. Le-Phuoc. Operator-aware approach for boosting performance in RDF stream

processing. J. Web Sem., 42:38–54, 2017.

[Danh18] D. Le-Phuoc. Adaptive optimisation for continuous multi-way joins over rdf streams.

In Companion Proceedings of the The Web Conference 2018, WWW ’18, pages 1857–1865,

2018.

[Danh21] Le-Phuoc, Danh, Thomas Eiter, and Anh Le-Tuan. "A scalable reasoning and learning

approach for neural-symbolic stream fusion." Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 35. No. 6. 2021.

[Dell17]D. Dell’Aglio, D. L. Phuoc, A. Le-Tuan, M. I. Ali, and J.-P. Calbimonte. On a web of data

streams. In DeSemWeb@ISWC, 2017.

[Denny14] Vrandečić, Denny, and Markus Krötzsch. "Wikidata: a free collaborative

knowledgebase." Communications of the ACM 57.10 (2014): 78-85.

[Dias19] Vinicius Dias, Carlos HC Teixeira, Dorgival Guedes, Wagner Meira, and Srinivasan

Parthasarathy. 2019. Fractal: A general-purpose graph pattern mining system. In Proceedings of

the 2019 International Conference on Management of Data. 1357–1374.

[Dominik23] Kreuzberger, Dominik, Niklas Kühl, and Sebastian Hirschl. "Machine learning

operations (mlops): Overview, definition, and architecture." IEEE Access (2023).

[Duc21] Manh Nguyen Duc, Anh Lê Tuán, Manfred Hauswirth, Danh Le Phuoc: Towards

autonomous semantic stream fusion for distributed video streams. DEBS 2021: 172-175.

[Fumero19] Juan Fumero, et al. “Dynamic application reconfiguration on heterogeneous

hardware”. VEE 2019: Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution (2019): 165–178

[Girshick15] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on

computer vision. 2015.

[Grubenmann18] T. Grubenmann, A. Bernstein, D. Moor, and S. Seuken. Financing the web of

data with delayed-answer auctions. In WWW ’18, 2018

[Haller19] A. Haller, K. Janowicz, S. J. D. Cox, M. Lefran çois, K. Taylor, D. Le-Phuoc, J. Lieberman,

R. Garc ı́a-Castro, R. Atkinson, and C. Stadler. The modular SSN ontology: A joint W3C and OGC

standard specifying the semantics of sensors, observations, sampling, and actuation. Semantic

Web, 10(1):9–32, 2019.

D5.2 SmartEdge GA 101092908

123

[Hong21] Hong, Jinyung, and Theodore P. Pavlic. "Representing Prior Knowledge Using

Randomly, Weighted Feature Networks for Visual Relationship Detection." arXiv preprint

arXiv:2111.10686 (2021).

[Hornung13] A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, "OctoMap:

An Efficient Probabilistic 3D Mapping Framework Based on Octrees" in Autonomous Robots,

2013; DOI: 10.1007/s10514-012-9321-0.

[Hussein23] Rana Hussein, Alberto Lerner, André Ryser, Lucas David Bürgi, Albert Blarer, Philippe

Cudré-Mauroux: GraphINC: Graph Pattern Mining at Network Speed. Proc. ACM Manag. Data

1(2): 184:1-184:28 (2023).

[ISD24] [dataset] https://www.ncdc.noaa.gov/isd

[Jia23] Jia, Ding, et al. "Detrs with hybrid matching." Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2023.

[Jiang23] Jiang, Bowen, and Camillo Taylor. "Hierarchical Relationships: A New Perspective to

Enhance Scene Graph Generation." NeurIPS 2023 Workshop: New Frontiers in Graph Learning.

2023.

[Jicheng23] Yuan, Jicheng, et al. "VisionKG: Unleashing the Power of Visual Datasets via

Knowledge Graph." arXiv preprint arXiv:2309.13610 (2023).

[Jung21] Jaehoon Jung, et al. “SnuRHAC:ARuntimeforHeterogeneousAcceleratorClusters

withCUDAUnifiedMemory”. HPDC '21: Proceedings of the 30th International Symposium on

High-Performance Parallel and Distributed Computing (2021): Pages 107–120

[Kien21] Kien-Tran, Trung, et al. "Fantastic Data and How to Query Them." NeurIPS (Workshop

on Data-Centric AI}, 2021.

[Kirillov23] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., … Girshick, R.

(2023). Segment Anything. arXiv:2304. 02643.

[Kundu23] Kundu, Sanjoy, and Sathyanarayanan N. Aakur. "IS-GGT: Iterative Scene Graph

Generation With Generative Transformers." Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2023.

[Kurt08] Bollacker, Kurt, et al. "Freebase: a collaboratively created graph database for

structuring human knowledge." Proceedings of the 2008 ACM SIGMOD international conference

on Management of data. 2008.

[Lee24] Sangjin Lee, Alberto Lerner, Philippe Bonnet, Philippe Cudré-Mauroux: Database

Kernels: Seamless Integration of Database Systems and Fast Storage via CXL. CIDR 2024.

[Lerner19] Alberto Lerner, Rana Hussein, Philippe Cudré-Mauroux: The Case for Network

Accelerated Query Processing. CIDR 2019.

[Lin17] Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE

international conference on computer vision. 2017.

[Liu22] Liu, Shilong, et al. "Dab-detr: Dynamic anchor boxes are better queries for detr." arXiv

preprint arXiv:2201.12329 (2022).

D5.2 SmartEdge GA 101092908

124

[Zheng24]Zheng, Changgang, et al. "Planter: Rapid prototyping of in-network machine learning

inference." ACM SIGCOMM Computer Communication Review 54.1 (2024): 2-21.

[Liu23] Liu, Shilong, et al. "Grounding dino: Marrying dino with grounded pre-training for open-

set object detection." arXiv preprint arXiv:2303.05499 (2023).

[Manh19] Nguyen-Duc, M., Le-Tuan, A., Calbimonte, J.P., Hauswirth, M., Le-Phuoc, D.:

Autonomous rdf stream processing for iot edge devices. In: JIST 2019, pp. 304–319. Springer,

Cham (2019)

[Manh22] Nguyen-Duc, Manh, et al. "SemRob: Towards Semantic Stream Reasoning for Robotic

Operating Systems." arXiv preprint arXiv:2201.11625 (2022).

[Mar23] Hirzel, Martin. Low-Code Programming Models. Commun. ACM 66(10): 76-85 (2023)

[Munshi09] A. Munshi, The OpenCL specification, 1, IEEE, Stanford, CA, USA, 2009.

[Nozal20] Raul Nozal, et al. “EngineCL: Usability and Performance in Heterogeneous

Computing”. Future Generation Computer Systems 107 (2020): Pages 522-537

[Naphade19] Naphade, Milind, Zheng Tang, Ming-Ching Chang, David C. Anastasiu, Anuj Sharma,

Rama Chellappa, Shuo Wang et al. "The 2019 AI City Challenge." In CVPR workshops, vol. 8, p. 2.

2019.

[Onos24] https://opennetworking.org/onos/

[Pang19] Pang, Jiangmiao, et al. "Libra r-cnn: Towards balanced learning for object detection."

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

[Park24] Kibin Park, Alberto Lerner, Sangjin Lee, Philippe Bonnet, Yong Ho Song, Philippe Cudré-

Mauroux, and Jungwook Choi. BABOL: A Software-Defined NAND Flash Controller. In 57th

IEEE/ACM International Symposium on Microarchitecture (MICRO 2024).

[Ranftl20] Ranftl, René, et al. "Towards robust monocular depth estimation: Mixing datasets for

zero-shot cross-dataset transfer." IEEE transactions on pattern analysis and machine intelligence

44.3 (2020): 1623-1637.

[Redmon15] Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2015). You Only Look Once:

Unified, Real-Time Object Detection. CoRR, abs/1506.02640. Retrieved from

http://arxiv.org/abs/1506.02640

[Ren15] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region

proposal networks." Advances in neural information processing systems 28 (2015).

[Ren24] Ren, T., Liu, S., Zeng, A., Lin, J., Li, K., Cao, H., … Zhang, L. (2024). Grounded SAM:

Assembling Open-World Models for Diverse Visual Tasks. arXiv [Cs.CV]. Retrieved from

http://arxiv.org/abs/2401.14159

[Rezatofighi19] Rezatofighi, Hamid, et al. "Generalized intersection over union: A metric and a

loss for bounding box regression." Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 2019.

[Robot Chunks Demo] “Robot demo using Chunks & Rules”, last modified 02 Jul 2020, W3C

Cognitive AI Community Group, URL: https://www.w3.org/Data/demos/chunks/robot/

https://www.w3.org/Data/demos/chunks/robot/

D5.2 SmartEdge GA 101092908

125

[Ryser22] André Ryser, Alberto Lerner, Alex Forencich, Philippe Cudré-Mauroux: D-RDMA:

Bringing Zero-Copy RDMA to Database Systems. CIDR 2022.

[Schneider22] Patrik Schneider, Daniel Alvarez-Coello, Anh Le-Tuan, Manh Nguyen Duc, Danh Le

Phuoc: Stream Reasoning Playground. ESWC 2022: 406-424.

[Shaoqing15] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region

proposal networks." Advances in neural information processing systems 28 (2015).

[Speer17] Speer, Robyn, Joshua Chin, and Catherine Havasi. "Conceptnet 5.5: An open

multilingual graph of general knowledge." Proceedings of the AAAI conference on artificial

intelligence. Vol. 31. No. 1. 2017.

[Tang19] Tang, Kaihua, et al. "Learning to compose dynamic tree structures for visual contexts."

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

[Tian19] Tian, Zhi, et al. "Fcos: Fully convolutional one-stage object detection." Proceedings of

the IEEE/CVF international conference on computer vision. 2019.

[Tommasini19] R. Tommasini, D. Calvaresi, and J.-P. Calbimonte. Stream reasoning agents:

Bluesky ideas track. In AAMAS, pages 1664–1680, 2019

[VanAssche21] Van Assche, Dylan, et al. “Leveraging Web of Things W3C recommendations for

knowledge graphs generation”, Proceedings of the 21st International Conference on Web

Engineering, 2021.

[Vrandečić14] Vrandečić, Denny, and Markus Krötzsch. "Wikidata: a free collaborative

knowledgebase." Communications of the ACM 57.10 (2014): 78-85.

[W3C24] “Web of Things” [Online], https://www.w3.org/WoT/documentation/, Retrieved
02/2024

[Xu17] Xu, Danfei, et al. "Scene graph generation by iterative message passing." Proceedings of

the IEEE conference on computer vision and pattern recognition. 2017.

[Zellers18] Zellers, Rowan, et al. "Neural motifs: Scene graph parsing with global context."

Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[Zhang22] Zhang, Hao, et al. "Dino: Detr with improved denoising anchor boxes for end-to-end

object detection." arXiv preprint arXiv:2203.03605 (2022).

[ZhangJi18] Zhang, Ji, et al. "An interpretable model for scene graph generation." arXiv preprint

arXiv:1811.09543 (2018).

[Zheng23] Zheng, Changgang et al. "DINC: toward distributed in-network computing", ACM

CoNEXT and Proceedings of the ACM on Networking (PACMNET), December 2023.

[Zong23] Zong, Zhuofan, Guanglu Song, and Yu Liu. "Detrs with collaborative hybrid assignments

training." Proceedings of the IEEE/CVF international conference on computer vision. 2023.

D5.2 SmartEdge GA 101092908

126

[Lin14] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L.

(2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th

European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp.

740-755). Springer International Publishing.
[Chen21] Chen, Q., Wang, W., Huang, K., De, S., Coenen, F.: Multi-modal generative adversarial

networks for traffic event detection in smart cities. Expert Systems with Applications 177,

114,939 (2021).

[Gao20] Gao, J., Li, P., Chen, Z., Zhang, J.: A survey on deep learning for multimodal data fusion.

Neural Computation 32(5), 829–864 (2020)

[Khadanga19] Khadanga, S., Aggarwal, K., Joty, S., Srivastava, J.: Using clinical notes with time

series data for icu man- agement. In: Proceedings of the 2019 Conference on Em- pirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pp. 6432–6437 (2019)

[Yang 21] Yang, H., Kuang, L., Xia, F.: Multimodal temporal- clinical note network for mortality

prediction. Journal of Biomedical Semantics 12(1), 1–14 (2021)

[Wang24] C.-Y. Wang, I.-H. Yeh, H.-Y. M. Liao, YOLOv9: Learning What You Want to Learn Using

Programmable Gradient Information, 2024. doi:10.48550/arXiv.2402.13616. arXiv:2402.13616.

[Wojke17] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep

association metric. In2017 IEEE international conference on image processing (ICIP) 2017 Sep 17

(pp. 3645-3649). IEEE.

[Zheng24] Zheng, Changgang, et al. "Planter: Rapid prototyping of in-network machine learning

inference." ACM SIGCOMM Computer Communication Review 54.1 (2024): 2-21.

[Shafarenko24] Shafarenko, A. “Winternitz stack protocols for embedded systems and IoT.”

Cybersecurity 7, 34 (2024).

